23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of a General Computer Algorithm Based on the Group-Additivity Method for the Calculation of Two Molecular Descriptors at Both Ends of Dilution: Liquid Viscosity and Activity Coefficient in Water at Infinite Dilution

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The application of a commonly used computer algorithm based on the group-additivity method for the calculation of the liquid viscosity coefficient at 293.15 K and the activity coefficient at infinite dilution in water at 298.15 K of organic molecules is presented. The method is based on the complete breakdown of the molecules into their constituting atoms, further subdividing them by their immediate neighborhood. A fast Gauss–Seidel fitting method using experimental data from literature is applied for the calculation of the atom groups’ contributions. Plausibility tests have been carried out on each of the calculations using a ten-fold cross-validation procedure which confirms the excellent predictive quality of the method. The goodness of fit (Q 2) and the standard deviation (σ) of the cross-validation calculations for the viscosity coefficient, expressed as log(η), was 0.9728 and 0.11, respectively, for 413 test molecules, and for the activity coefficient log(γ) the corresponding values were 0.9736 and 0.31, respectively, for 621 test compounds. The present approach has proven its versatility in that it enabled the simultaneous evaluation of the liquid viscosity of normal organic compounds as well as of ionic liquids.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: not found
          • Article: not found

          An Extended Hückel Theory. I. Hydrocarbons

            • Record: found
            • Abstract: not found
            • Article: not found

            Density, Viscosity, Speed of Sound, and Electrolytic Conductivity for the Ionic Liquid 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and Its Mixtures with Water†

              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Generally Applicable Computer Algorithm Based on the Group Additivity Method for the Calculation of Seven Molecular Descriptors: Heat of Combustion, LogP O/W , LogS, Refractivity, Polarizability, Toxicity and LogBB of Organic Compounds; Scope and Limits of Applicability

              A generally applicable computer algorithm for the calculation of the seven molecular descriptors heat of combustion, logPoctanol/water, logS (water solubility), molar refractivity, molecular polarizability, aqueous toxicity (protozoan growth inhibition) and logBB (log (cblood/cbrain)) is presented. The method, an extendable form of the group-additivity method, is based on the complete break-down of the molecules into their constituting atoms and their immediate neighbourhood. The contribution of the resulting atom groups to the descriptor values is calculated using the Gauss-Seidel fitting method, based on experimental data gathered from literature. The plausibility of the method was tested for each descriptor by means of a k-fold cross-validation procedure demonstrating good to excellent predictive power for the former six descriptors and low reliability of logBB predictions. The goodness of fit (Q2) and the standard deviation of the 10-fold cross-validation calculation was >0.9999 and 25.2 kJ/mol, respectively, (based on N = 1965 test compounds) for the heat of combustion, 0.9451 and 0.51 (N = 2640) for logP, 0.8838 and 0.74 (N = 1419) for logS, 0.9987 and 0.74 (N = 4045) for the molar refractivity, 0.9897 and 0.77 (N = 308) for the molecular polarizability, 0.8404 and 0.42 (N = 810) for the toxicity and 0.4709 and 0.53 (N = 383) for logBB. The latter descriptor revealing a very low Q2 for the test molecules (R2 was 0.7068 and standard deviation 0.38 for N = 413 training molecules) is included as an example to show the limits of the group-additivity method. An eighth molecular descriptor, the heat of formation, was indirectly calculated from the heat of combustion data and correlated with published experimental heat of formation data with a correlation coefficient R2 of 0.9974 (N = 2031).

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                21 December 2017
                January 2018
                : 23
                : 1
                : 5
                Affiliations
                [1 ]Department of Chemistry, University of Basel, 4003 Basel, Switzerland
                [2 ]Department of Chemistry, University of North Texas, Denton, TX 76203, USA; acree@ 123456unt.edu
                Author notes
                [* ]Correspondence: rudolf.naef@ 123456unibas.ch ; Tel.: +41-619-119-273
                Author information
                https://orcid.org/0000-0002-7075-9843
                Article
                molecules-23-00005
                10.3390/molecules23010005
                5943952
                29267187
                f0c9ebdf-d1be-4311-85ed-c425b31bb5c6
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 December 2017
                : 19 December 2017
                Categories
                Article

                liquid viscosity,activity coefficient at infinite dilution,group-additivity method

                Comments

                Comment on this article

                Related Documents Log