25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Neanderthal brain size at birth provides insights into the evolution of human life history

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          From birth to adulthood, the human brain expands by a factor of 3.3, compared with 2.5 in chimpanzees [DeSilva J and Lesnik J (2006) Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. J Hum Evol 51: 207-212]. How the required extra amount of human brain growth is achieved and what its implications are for human life history and cognitive development are still a matter of debate. Likewise, because comparative fossil evidence is scarce, when and how the modern human pattern of brain growth arose during evolution is largely unknown. Virtual reconstructions of a Neanderthal neonate from Mezmaiskaya Cave (Russia) and of two Neanderthal infant skeletons from Dederiyeh Cave (Syria) now provide new comparative insights: Neanderthal brain size at birth was similar to that in recent Homo sapiens and most likely subject to similar obstetric constraints. Neanderthal brain growth rates during early infancy were higher, however. This pattern of growth resulted in larger adult brain sizes but not in earlier completion of brain growth. Because large brains growing at high rates require large, late-maturing, mothers [Leigh SR and Blomquist GE (2007) in Campbell CJ et al. Primates in perspective; pp 396-407], it is likely that Neanderthal life history was similarly slow, or even slower-paced, than in recent H. sapiens.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Brain development during childhood and adolescence: a longitudinal MRI study.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hominin life history: reconstruction and evolution.

            In this review we attempt to reconstruct the evolutionary history of hominin life history from extant and fossil evidence. We utilize demographic life history theory and distinguish life history variables, traits such as weaning, age at sexual maturity, and life span, from life history-related variables such as body mass, brain growth, and dental development. The latter are either linked with, or can be used to make inferences about, life history, thus providing an opportunity for estimating life history parameters in fossil taxa. We compare the life history variables of modern great apes and identify traits that are likely to be shared by the last common ancestor of Pan-Homo and those likely to be derived in hominins. All great apes exhibit slow life histories and we infer this to be true of the last common ancestor of Pan-Homo and the stem hominin. Modern human life histories are even slower, exhibiting distinctively long post-menopausal life spans and later ages at maturity, pointing to a reduction in adult mortality since the Pan-Homo split. We suggest that lower adult mortality, distinctively short interbirth intervals, and early weaning characteristic of modern humans are derived features resulting from cooperative breeding. We evaluate the fidelity of three life history-related variables, body mass, brain growth and dental development, with the life history parameters of living great apes. We found that body mass is the best predictor of great ape life history events. Brain growth trajectories and dental development and eruption are weakly related proxies and inferences from them should be made with caution. We evaluate the evidence of life history-related variables available for extinct species and find that prior to the transitional hominins there is no evidence of any hominin taxon possessing a body size, brain size or aspects of dental development much different from what we assume to be the primitive life history pattern for the Pan-Homo clade. Data for life history-related variables among the transitional hominin grade are consistent and none agrees with a modern human pattern. Aside from mean body mass, adult brain size, crown and root formation times, and the timing and sequence of dental eruption of Homo erectus are inconsistent with that of modern humans. Homo antecessor fossil material suggests a brain size similar to that of Homo erectus s. s., and crown formation times that are not yet modern, though there is some evidence of modern human-like timing of tooth formation and eruption. The body sizes, brain sizes, and dental development of Homo heidelbergensis and Homo neanderthalensis are consistent with a modern human life history but samples are too small to be certain that they have life histories within the modern human range. As more life history-related variable information for hominin species accumulates we are discovering that they can also have distinctive life histories that do not conform to any living model. At least one extinct hominin subclade, Paranthropus, has a pattern of dental life history-related variables that most likely set it apart from the life histories of both modern humans and chimpanzees.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans.

              The gene Microcephalin (MCPH1) regulates brain size and has evolved under strong positive selection in the human evolutionary lineage. We show that one genetic variant of Microcephalin in modern humans, which arose approximately 37,000 years ago, increased in frequency too rapidly to be compatible with neutral drift. This indicates that it has spread under strong positive selection, although the exact nature of the selection is unknown. The finding that an important brain gene has continued to evolve adaptively in anatomically modern humans suggests the ongoing evolutionary plasticity of the human brain. It also makes Microcephalin an attractive candidate locus for studying the genetics of human variation in brain-related phenotypes.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 16 2008
                September 16 2008
                September 08 2008
                September 16 2008
                : 105
                : 37
                : 13764-13768
                Article
                10.1073/pnas.0803917105
                2533682
                18779579
                f0d166c3-0f3f-486a-8a47-c34bc7749a29
                © 2008
                History

                Comments

                Comment on this article