6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Differential regulation of fos family genes in the ventrolateral and dorsomedial subdivisions of the rat suprachiasmatic nucleus.

      Neuroscience
      Animals, Arginine Vasopressin, genetics, Circadian Rhythm, Gene Expression Regulation, physiology, Genes, Immediate-Early, Male, Photic Stimulation, Proto-Oncogene Proteins c-fos, RNA, Messenger, analysis, Rats, Rats, Sprague-Dawley, Suprachiasmatic Nucleus, chemistry

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extensive studies have established that light regulates c-fos gene expression in the suprachiasmatic nucleus, the site of an endogenous circadian clock, but relatively little is known about the expression of genes structurally related to c-fos, including fra-1, fra-2 and fosB. We analysed the photic and temporal regulation of these genes at the messenger RNA and immunoreactive protein levels in rat suprachiasmatic nucleus, and we found different expression patterns after photic stimulation and depending on location in the ventrolateral or dorsomedial subdivisions. In the ventrolateral suprachiasmatic nucleus, c-fos, fra-2 and fosB expression was stimulated after a subjective-night (but not subjective-day) light pulse. Expression of the fra-2 gene was prolonged following photic stimulation, with elevated messenger RNA and protein levels that appeared unchanged for at least a few hours beyond the c-fos peak. Unlike c-fos and fra-2, the fosB gene appeared to be expressed constitutively in the ventrolateral suprachiasmatic nucleus throughout the circadian cycle; immunohistochemical analysis suggested that delta FosB was the protein product accounting for this constitutive expression, while FosB was induced by the subjective-night light pulse. In the dorsomedial suprachiasmatic nucleus, c-fos and fra-2 expression exhibited an endogenous circadian rhythm, with higher levels during the early subjective day, although the relative abundance was much lower than that measured after light pulses in the ventrolateral suprachiasmatic nucleus. Double-label immunohistochemistry suggested that some of the dorsomedial cells responsible for the circadian expression of c-Fos also synthesized arginine vasopressin. No evidence of suprachiasmatic nucleus fra-1 expression was found. In summary, fos family genes exhibit differences in their specific expression patterns in the suprachiasmatic nucleus, including their photic and circadian regulation in separate cell populations in the ventrolateral and dorsomedial subdivisions. The data, in combination with our previous results [Takeuchi J. et al. (1993) Neuron 11, 825-836], suggest that activator protein-1 binding sites on ventrolateral suprachiasmatic nucleus target genes are constitutively occupied by DeltaFosB/JunD complexes, and that c-Fos, Fra-2, FosB and JunB compete for binding after photic stimulation. The differential regulation of fos family genes in the ventrolateral and dorsomedial suprachiasmatic nucleus suggests that their circadian function(s) and downstream target(s) are likely to be cell specific.

          Related collections

          Author and article information

          Comments

          Comment on this article