36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction of Co-Receptor Usage of HIV-1 from Genotype

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human Immunodeficiency Virus 1 uses for entry into host cells a receptor (CD4) and one of two co-receptors (CCR5 or CXCR4). Recently, a new class of antiretroviral drugs has entered clinical practice that specifically bind to the co-receptor CCR5, and thus inhibit virus entry. Accurate prediction of the co-receptor used by the virus in the patient is important as it allows for personalized selection of effective drugs and prognosis of disease progression. We have investigated whether it is possible to predict co-receptor usage accurately by analyzing the amino acid sequence of the main determinant of co-receptor usage, i.e., the third variable loop V3 of the gp120 protein. We developed a two-level machine learning approach that in the first level considers two different properties important for protein-protein binding derived from structural models of V3 and V3 sequences. The second level combines the two predictions of the first level. The two-level method predicts usage of CXCR4 co-receptor for new V3 sequences within seconds, with an area under the ROC curve of 0.937±0.004. Moreover, it is relatively robust against insertions and deletions, which frequently occur in V3. The approach could help clinicians to find optimal personalized treatments, and it offers new insights into the molecular basis of co-receptor usage. For instance, it quantifies the importance for co-receptor usage of a pocket that probably is responsible for binding sulfated tyrosine.

          Author Summary

          Human Immunodeficiency Virus is the pathogen causing the disease AIDS. A precondition for virus entry into human cells is the contact of its glycoprotein gp120 with two cellular proteins, a receptor and a co-receptor. Depending on the viral strain, one specific co-receptor is used. The type of co-receptor used is crucial for the aggressiveness of the viral strain and the available treatment options. Hence, it is important to identify which co-receptor is used by the virus in an individual patient. Since the genome of the virus in the patient can be readily sequenced, and thus the composition of the viral proteins be determined, it could be possible to predict co-receptor usage from the viral genome sequences. To this end, we developed a method that is motivated by the insight that physical properties of gp120 will determine its specificity for a co-receptor. The method learns a computational model from structures and sequences of a crucial part of gp120, and the corresponding experimentally measured co-receptor usage. It then employs the model to predict co-receptor usage for new sequences. The high accuracy of the method could make it helpful for diagnosis and suggests that the model captures the determinants of co-receptor usage.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.

          Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 microM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of a V3-containing HIV-1 gp120 core.

            The third variable region (V3) of the HIV-1 gp120 envelope glycoprotein is immunodominant and contains features essential for coreceptor binding. We determined the structure of V3 in the context of an HIV-1 gp120 core complexed to the CD4 receptor and to the X5 antibody at 3.5 angstrom resolution. Binding of gp120 to cell-surface CD4 would position V3 so that its coreceptor-binding tip protrudes 30 angstroms from the core toward the target cell membrane. The extended nature and antibody accessibility of V3 explain its immunodominance. Together, the results provide a structural rationale for the role of V3 in HIV entry and neutralization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4.

              The CCR5 co-receptor binds to the HIV-1 gp120 envelope glycoprotein and facilitates HIV-1 entry into cells. Its N terminus is tyrosine-sulfated, as are many antibodies that react with the co-receptor binding site on gp120. We applied nuclear magnetic resonance and crystallographic techniques to analyze the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody 412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated regions of CCR5 (alpha-helix) and 412d (extended loop) are surprisingly different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces similar structural rearrangements in gp120. These results now provide a framework for understanding HIV-1 interactions with the CCR5 N terminus during viral entry and define a conserved site on gp120, whose recognition of sulfotyrosine engenders posttranslational mimicry by the immune system.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                April 2010
                April 2010
                15 April 2010
                : 6
                : 4
                : e1000743
                Affiliations
                [1]Department of Bioinformatics, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
                Max-Planck-Institut für Informatik, Germany
                Author notes

                Conceived and designed the experiments: J. Dybowski, D. Heider, D. Hoffmann. Performed the experiments: J. Dybowski, D. Heider. Analyzed the data: J. Dybowski, D. Heider, D. Hoffmann. Wrote the paper: D. Hoffmann.

                Article
                09-PLCB-RA-1320R3
                10.1371/journal.pcbi.1000743
                2855328
                20419152
                f0d67b5a-b23d-4fdb-bb08-0cdf7cb0d67c
                Dybowski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 October 2009
                : 16 March 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Biophysics
                Computational Biology/Macromolecular Sequence Analysis
                Computational Biology/Macromolecular Structure Analysis
                Computer Science/Applications
                Molecular Biology/Bioinformatics
                Virology/Diagnosis
                Virology/Host Invasion and Cell Entry
                Virology/Immunodeficiency Viruses

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article