22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms.

          Neurofibrillary tangles are composed of insoluble aggregates of the microtubule-associated protein tau. In Alzheimer's disease the accumulation of neurofibrillary tangles occurs in the absence of tau mutations. Here we present mice that develop pathology from non-mutant human tau, in the absence of other exogenous factors, including beta-amyloid. The pathology in these mice is Alzheimer-like, with hyperphosphorylated tau accumulating as aggregated paired helical filaments. This pathologic tau accumulates in the cell bodies and dendrites of neurons in a spatiotemporally relevant distribution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease.

            The principal pathological features of Alzheimer's disease (AD) are extracellular amyloid plaques and intracellular neurofibrillary tangles, the latter composed of the microtubule-binding protein tau assembled into paired helical and straight filaments. Recent studies suggest that these pathological entities may be functionally linked, although the mechanisms by which amyloid deposition promotes pathological tau filament assembly are poorly understood. Here, we report that tau is proteolyzed by multiple caspases at a highly conserved aspartate residue (Asp421) in its C terminus in vitro and in neurons treated with amyloid-beta (Abeta) (1-42) peptide. Tau is rapidly cleaved at Asp421 in Abeta-treated neurons (within 2 h), and its proteolysis appears to precede the nuclear events of apoptosis. We also demonstrate that caspase cleavage of tau generates a truncated protein that lacks its C-terminal 20 amino acids and assembles more rapidly and more extensively into tau filaments in vitro than wild-type tau. Using a monoclonal antibody that specifically recognizes tau truncated at Asp421, we show that tau is proteolytically cleaved at this site in the fibrillar pathologies of AD brain. Taken together, our results suggest a novel mechanism linking amyloid deposition and neurofibrillary tangles in AD: Abeta peptides promote pathological tau filament assembly in neurons by triggering caspase cleavage of tau and generating a proteolytic product with enhanced polymerization kinetics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau.

              Microtubule-associated proteins (MAP), such as tau, modulate the extent and rate of microtubule assembly and play an essential role in morphogenetic processes, such as axonal growth. We have examined the mechanism by which tau affects microtubule polymerization by examining the kinetics of microtubule assembly and disassembly through direct observation of microtubules using dark-field microscopy. Tau increases the rate of polymerization, decreases the rate of transit into the shrinking phase (catastrophe), and inhibits the rate of depolymerization. Tau strongly suppresses the catastrophe rate, and its ability to do so is independent of its ability to increase the elongation rate. Thus, tau generates a partially stable but still dynamic state in microtubules. This state is perturbed by phosphorylation by MAP2 kinase, which affects all three activities by lowering the affinity of tau for the microtubule lattice.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                J. Clin. Invest.
                American Society for Clinical Investigation
                0021-9738
                July 1 2004
                July 1 2004
                : 114
                : 1
                : 121-130
                Article
                10.1172/JCI200420640
                15232619
                f0d8ac03-0d3b-4261-b404-d04c9f5f0739
                © 2004
                History

                Comments

                Comment on this article