Blog
About

21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours.

      International Journal of Radiation Oncology, Biology, Physics

      radiography, radiotherapy, Feasibility Studies, Female, Brachytherapy, Humans, Magnetic Resonance Imaging, Middle Aged, Prospective Studies, Radiotherapy Dosage, Tomography, X-Ray Computed, Tumor Burden, Uterine Cervical Neoplasms, pathology, Adult, Aged

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To compare the contours and dose-volume histograms (DVH) of the tumor and organs at risk (OAR) with computed tomography (CT) vs. magnetic resonance imaging (MRI) in cervical cancer brachytherapy. Ten patients underwent both MRI and CT after applicator insertion. The dose received by at least 90% of the volume (D(90)), the minimal target dose (D(100)), the volume treated to the prescription dose or greater for tumor for the high-risk (HR) and intermediate-risk (IR) clinical target volume (CTV) and the dose to 0.1 cm3, 1 cm3, and 2 cm3 for the OARs were evaluated. A standardized approach to contouring on CT (CT(Std)) was developed, implemented (HR- and IR-CTV(CTStd)), and compared with the MRI contours. Tumor height, thickness, and total volume measurements, as determined by either CT or CT(Std) were not significantly different compared with the MRI volumes. In contrast, the width measurements differed in HR-CTV(CTStd) (p = 0.05) and IR-CTV(CTStd) (p = 0.01). For the HR-CTV(CTStd), this resulted in statistically significant differences in the volume treated to the prescription dose or greater (MRI, 96% vs. CT(Std), 86%, p = 0.01), D(100) (MRI, 5.4 vs. CT(Std), 3.4, p <0.01), and D(90) (MRI, 8.7 vs. CT(Std), 6.7, p <0.01). Correspondingly, the IR-CTV DVH values on MRI vs. CT(Std), differed in the D(100) (MRI, 3.0 vs. CT(Std), 2.2, p = 0.01) and D(90) (MRI, 5.6 vs. CT(Std), 4.6, p = 0.02). The MRI and CT DVH values of the dose to 0.1 cm3, 1 cm3, and 2 cm3 for the OARs were similar. Computed tomography-based or MRI-based scans at brachytherapy are adequate for OAR DVH analysis. However, CT tumor contours can significantly overestimate the tumor width, resulting in significant differences in the D(90), D(100), and volume treated to the prescription dose or greater for the HR-CTV compared with that using MRI. MRI remains the standard for CTV definition.

          Related collections

          Author and article information

          Journal
          17331668
          10.1016/j.ijrobp.2006.12.021

          Comments

          Comment on this article