Blog
About

36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chromatinization of the KSHV Genome During the KSHV Life Cycle

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.

          Related collections

          Most cited references 203

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of the nucleosome core particle at 2.8 A resolution.

          The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it. Both histone/histone and histone/DNA interactions depend on the histone fold domains and additional, well ordered structure elements extending from this motif. Histone amino-terminal tails pass over and between the gyres of the DNA superhelix to contact neighbouring particles. The lack of uniformity between multiple histone/DNA-binding sites causes the DNA to deviate from ideal superhelix geometry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.

            Representational difference analysis was used to isolate unique sequences present in more than 90 percent of Kaposi's sarcoma (KS) tissues obtained from patients with acquired immunodeficiency syndrome (AIDS). These sequences were not present in tissue DNA from non-AIDS patients, but were present in 15 percent of non-KS tissue DNA samples from AIDS patients. The sequences are homologous to, but distinct from, capsid and tegument protein genes of the Gammaherpesvirinae, herpesvirus saimiri and Epstein-Barr virus. These KS-associated herpesvirus-like (KSHV) sequences appear to define a new human herpesvirus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas.

              DNA fragments that appeared to belong to an unidentified human herpesvirus were recently found in more than 90 percent of Kaposi's sarcoma lesions associated with the acquired immunodeficiency syndrome (AIDS). These fragments were also found in 6 of 39 tissue samples without Kaposi's sarcoma, including 3 malignant lymphomas, from patients with AIDS, but not in samples from patients without AIDS. We examined the DNA of 193 lymphomas from 42 patients with AIDS and 151 patients who did not have AIDS. We searched the DNA for sequences of Kaposi's sarcoma-associated herpesvirus (KSHV) by Southern blot hybridization, the polymerase chain reaction (PCR), or both. The PCR products in the positive samples were sequences and compared with the KSHV sequences in Kaposi's sarcoma tissues from patients with AIDS. KSHV sequences were identified in eight lymphomas in patients infected with the human immunodeficiency virus. All eight, and only these eight, were body-cavity-based lymphomas--that is, they were characterized by pleural, pericardial, or peritoneal lymphomatous effusions. All eight lymphomas also contained the Epstein-Barr viral genome. KSHV sequences were not found in the other 185 lymphomas. KSHV sequences were 40 to 80 times more abundant in the body-cavity-based lymphomas than in the Kaposi's sarcoma lesions. A high degree of conservation of KSHV sequences in Kaposi's sarcoma and in the eight lymphomas suggests the presence of the same agent in both lesions. The recently discovered KSHV DNA sequences occur in an unusual subgroup of AIDS-related B-cell lymphomas, but not in any other lymphoid neoplasm studied thus far. Our finding strongly suggests that a novel herpesvirus has a pathogenic role in AIDS-related body-cavity-based lymphomas.
                Bookmark

                Author and article information

                Affiliations
                [1 ]Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA; E-Mails: tuppal@ 123456medicine.nevada.edu (T.U.); scverma@ 123456medicine.nevada.edu (S.C.V.)
                [2 ]Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA; E-Mail: hemjha@ 123456mail.med.upenn.edu
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: erle@ 123456mail.med.upenn.edu ; Tel.: +1-215-746-0114.
                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                14 January 2015
                March 2015
                : 7
                : 1
                : 112-142
                25594667 4381254 10.3390/cancers7010112 cancers-07-00112
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Comments

                Comment on this article