13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wildfires and the role of their drivers are changing over time in a large rural area of west-central Spain

      research-article
      , ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During the last decades, wildfires have been changing in many areas across the world, due to changes in climate, landscapes and socioeconomic drivers. However, how the role of these drivers changed over time has been little explored. Here, we assessed, in a spatially and temporally explicit way, the changing role of biophysical and human-related factors on wildfires in a rural area in west-central Spain from 1979 to 2008. Longitudinal Negative Binomial (NB) and Zero-Inflated Negative Binomial (ZINB) mixed models, with time as interacting factor (continuous and categorical), were used to model the number of fires of increasing size (≥1–10 ha, >10–100 ha, >100 ha) per 10 × 10 km cell per year, based on fire statistics. We found that the landscape was rather dynamic, and generally became more hazardous over time. Small fires increased and spread over the landscape with time, with medium and large fires being stable or decreasing. NB models were best for modelling small fires, while ZINB for medium and large; models including time as a categorical factor performed the best. Best models were associated to topography, land-use/land cover (LULC) types and the changes they underwent, as well as agrarian characteristics. Climate variables, forest interfaces, and other socioeconomic variables played a minor role. Wildfires were initially more frequent in rugged topography, conifer forests, shrublands and cells undergoing changes in LULC types of hazardous nature, for all fire sizes. As time went by, wildfires lost the links with the initial fire-prone areas, and as they spread, became more associated to lower elevation areas, with higher solar radiation, herbaceous crops, and large size farms. Thus, the role of the fire drivers changed over time; some decreased their explaining power, while others increased. These changes with time in the total number of fires, in their spatial pattern and in the controlling drivers limit the ability to predict future fires.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global Pyrogeography: the Current and Future Distribution of Wildfire

            Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Landscape--wildfire interactions in southern Europe: implications for landscape management.

              Every year approximately half a million hectares of land are burned by wildfires in southern Europe, causing large ecological and socio-economic impacts. Climate and land use changes in the last decades have increased fire risk and danger. In this paper we review the available scientific knowledge on the relationships between landscape and wildfires in the Mediterranean region, with a focus on its application for defining landscape management guidelines and policies that could be adopted in order to promote landscapes with lower fire hazard. The main findings are that (1) socio-economic drivers have favoured land cover changes contributing to increasing fire hazard in the last decades, (2) large wildfires are becoming more frequent, (3) increased fire frequency is promoting homogeneous landscapes covered by fire-prone shrublands; (4) landscape planning to reduce fuel loads may be successful only if fire weather conditions are not extreme. The challenges to address these problems and the policy and landscape management responses that should be adopted are discussed, along with major knowledge gaps. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                olga.viedma@uclm.es
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 December 2018
                12 December 2018
                2018
                : 8
                : 17797
                Affiliations
                ISNI 0000 0001 2194 2329, GRID grid.8048.4, Departamento de Ciencias Ambientales, , Universidad de Castilla-La Mancha, ; Avda. Carlos III, 45071 Toledo, Spain
                Article
                36134
                10.1038/s41598-018-36134-4
                6290888
                30542114
                f0ebf712-6c3c-4bf9-add2-21c4654a5092
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 June 2018
                : 16 November 2018
                Funding
                Funded by: European Union's Seventh Framework Programme (FP7/2007–2013), Project FUME, grant agreement no. 243888. FOCCLIM project (CGL2016-78357-R) funded by the Spanish Ministerio de Economía y Competitividad
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article