10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nutrigenomic effects of edible bird’s nest on insulin signaling in ovariectomized rats

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Estrogen deficiency alters quality of life during menopause. Hormone replacement therapy has been used to improve quality of life and prevent complications, but side effects limit its use. In this study, we evaluated the use of edible bird’s nest (EBN) for prevention of cardiometabolic problems in rats with ovariectomy-induced menopause. Ovariectomized female rats were fed for 12 weeks with normal rat chow, EBN, or estrogen and compared with normal non-ovariectomized rats. Metabolic indices (insulin, estrogen, superoxide dismutase, malondialdehyde, oral glucose tolerance test, and lipid profile) were measured at the end of the experiment from serum and liver tissue homogenate, and transcriptional levels of hepatic insulin signaling genes were measured. The results showed that ovariectomy worsened metabolic indices and disrupted the normal transcriptional pattern of hepatic insulin signaling genes. EBN improved the metabolic indices and also produced transcriptional changes in hepatic insulin signaling genes that tended toward enhanced insulin sensitivity, and glucose and lipid homeostasis, even better than estrogen. The data suggest that EBN could meliorate estrogen deficiency-associated increase in risk of cardiometabolic disease in rats, and may in fact be useful as a functional food for the prevention of such a problem in humans. The clinical validity of these findings is worth studying further.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          IKK-beta links inflammation to obesity-induced insulin resistance.

          Inflammation may underlie the metabolic disorders of insulin resistance and type 2 diabetes. IkappaB kinase beta (IKK-beta, encoded by Ikbkb) is a central coordinator of inflammatory responses through activation of NF-kappaB. To understand the role of IKK-beta in insulin resistance, we used mice lacking this enzyme in hepatocytes (Ikbkb(Deltahep)) or myeloid cells (Ikbkb(Deltamye)). Ikbkb(Deltahep) mice retain liver insulin responsiveness, but develop insulin resistance in muscle and fat in response to high fat diet, obesity or aging. In contrast, Ikbkb(Deltamye) mice retain global insulin sensitivity and are protected from insulin resistance. Thus, IKK-beta acts locally in liver and systemically in myeloid cells, where NF-kappaB activation induces inflammatory mediators that cause insulin resistance. These findings demonstrate the importance of liver cell IKK-beta in hepatic insulin resistance and the central role of myeloid cells in development of systemic insulin resistance. We suggest that inhibition of IKK-beta, especially in myeloid cells, may be used to treat insulin resistance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress and metabolic syndrome.

            Metabolic syndrome is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Metabolic syndrome is often characterized by oxidative stress, a condition in which an imbalance results between the production and inactivation of reactive oxygen species. Reactive oxygen species can best be described as double-edged swords; while they play an essential role in multiple physiological systems, under conditions of oxidative stress, they contribute to cellular dysfunction. Oxidative stress is thought to play a major role in the pathogenesis of a variety of human diseases, including atherosclerosis, diabetes, hypertension, aging, Alzheimer's disease, kidney disease and cancer. The purpose of this review is to discuss the role of oxidative stress in metabolic syndrome and its major clinical manifestations (namely coronary artery disease, hypertension and diabetes). It will also highlight the effects of lifestyle modification in ameliorating oxidative stress in metabolic syndrome. Discussion will be limited to human data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review on the role of antioxidants in the management of diabetes and its complications.

              Diabetes is a prevalent systemic disease affecting a significant proportion of the population worldwide. The effects of diabetes are devastating and well documented. There is increasing evidence that in certain pathologic states, especially chronic diseases, the increased production and/or ineffective scavenging of reactive oxygen species (ROS) may play a critical role. High reactivity of ROS determines chemical changes in virtually all cellular components, leading to lipid peroxidation. Production of ROS and disturbed capacity of antioxidant defense in diabetic subjects have been reported. It has been suggested that enhanced production of free radicals and oxidative stress is central event to the development of diabetic complications. This suggestion has been supported by demonstration of increased levels of indicators of oxidative stress in diabetic individuals suffering from complications. Therefore, it seems reasonable that antioxidants can play an important role in the improvement of diabetes. There are many reports on effects of antioxidants in the management of diabetes. In this paper, after complete bibliography and criticizing all relevant articles, the relationships between diabetes and oxidative stress and use of antioxidants in the management of diabetes and its complications have been well reviewed. This review well indicates that oxidative stress is involved in the pathogenesis of diabetes and its complications. Use of antioxidants reduces oxidative stress and alleviates diabetic complications.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                14 August 2015
                : 9
                : 4115-4125
                Affiliations
                [1 ]Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
                [2 ]Department of Pathology, Chengde Medical University, Chengde, People’s Republic of China
                [3 ]Department of Nutrition and Dietetics, Universiti Putra Malaysia, Serdang, Malaysia
                [4 ]Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
                [5 ]Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
                Author notes
                Correspondence: Maznah Ismail, Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia, Fax +60 3 8947 2116, Email maznahis@ 123456upm.edu.my
                Article
                dddt-9-4115
                10.2147/DDDT.S80743
                4544723
                © 2015 Hou et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article