9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A 13.42-kb tandem duplication at the ASIP locus is strongly associated with the depigmentation phenotype of non-classic Swiss markings in goats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The pigmentation phenotype diversity is rich in domestic goats, and identification of the genetic loci affecting coat color in goats has long been of interest. Via the detections of selection signatures, a duplication upstream ASIP was previously reported to be a variant affecting the Swiss markings depigmentation phenotype in goats.

          Results

          We conducted a genome-wide association study using whole-genome sequencing (WGS) data to identify the genetic loci and causal variants affecting the pigmentation phenotype in 65 Jintang black (JT) goats (i.e., 48 solid black vs. 17 non-classic Swiss markings). Although a single association peak harboring the ASIP gene at 52,619,845–72,176,538 bp on chromosome 13 was obtained using a linear mixed model approach, all the SNPs and indels in this region were excluded as causal variants for the pigmentation phenotype. We then found that all 17 individuals with non-classic Swiss markings carried a 13,420-bp duplication (CHI13:63,129,198–63,142,617 bp) nearly 101 kb upstream of ASIP, and this variant was strongly associated ( P = 1.48 × 10 − 12) with the coat color in the 65 JT goats. The copy numbers obtained from the WGS data also showed that the duplication was present in all 53 goats from three European breeds with Swiss markings and absent in 45 of 51 non-Swiss markings goats from four other breeds and 21 Bezoars, which was further validated in 314 samples from seven populations based on PCR amplification. The copy numbers of the duplication vary in different goat breeds with Swiss markings, indicating a threshold effect instead of a dose-response effect at the molecular level. Furthermore, breakpoint flanking repeat analysis revealed that the duplication was likely to be a result of the Bov-B-mediated nonallelic homologous recombination.

          Conclusion

          We confirmed that a genomic region harboring the ASIP gene is a major locus affecting the coat color phenotype of Swiss markings in goats. Although the molecular genetic mechanisms remain unsolved, the 13,420-bp duplication upstream of ASIP is a necessary but not sufficient condition for this phenotype in goats. Moreover, the variations in the copy number of the duplication across different goat breeds do not lead to phenotypic heterogeneity.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12864-022-08672-9.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fast and accurate short read alignment with Burrows–Wheeler transform

          Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.

            Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS--the 1000 Genome pilot alone includes nearly five terabases--make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The variant call format and VCFtools

              Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: rd@sanger.ac.uk
                Bookmark

                Author and article information

                Contributors
                george.liu@usda.gov
                zhp@sicau.edu.cn
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                13 June 2022
                13 June 2022
                2022
                : 23
                : 437
                Affiliations
                [1 ]GRID grid.80510.3c, ISNI 0000 0001 0185 3134, College of Animal Science and Technology, , Sichuan Agricultural University, ; Chengdu, 611130 China
                [2 ]GRID grid.508984.8, Animal Genomics and Improvement Laboratory, BARC, , Agricultural Research Service, USDA, ; Beltsville, MD 20705 USA
                Article
                8672
                10.1186/s12864-022-08672-9
                9190080
                35698044
                f0f5b5e2-c904-4277-9468-296436fb33cb
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 4 March 2022
                : 27 May 2022
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Genetics
                goat,coat color,swiss markings,whole-genome sequencing,genome-wide association study,asip,copy number variations

                Comments

                Comment on this article