10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of (R)-glyceraldehyde 3-phosphate in D2O.

      1 , ,
      Biochemistry

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The product distributions for the reactions of (R)-glyceraldehyde 3-phosphate (GAP) in D(2)O at pD 7.5-7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy. Three products were observed from the reactions catalyzed by TIM: dihydroxyacetone phosphate (DHAP) from isomerization with intramolecular transfer of hydrogen (49% of the enzymatic products), [1(R)-(2)H]-DHAP from isomerization with incorporation of deuterium from D(2)O into C-1 of DHAP (31% of the enzymatic products), and [2(R)-(2)H]-GAP from incorporation of deuterium from D(2)O into C-2 of GAP (21% of the enzymatic products). The similar yields of [1(R)-(2)H]-DHAP and [2(R)-(2)H]-GAP from partitioning of the enzyme-bound enediol(ate) intermediate between hydron transfer to C-1 and C-2 is consistent with earlier results, which showed that there are similar barriers for conversion of this intermediate to the alpha-hydroxy ketone and aldehyde products (Knowles, J. R., and Albery, W. J. (1977) Acc. Chem. Res. 10, 105-111). However, the observation that the TIM-catalyzed isomerization of GAP in D(2)O proceeds with 49% intramolecular transfer of the (1)H label from substrate to product DHAP stands in sharp contrast with the <or=6% intramolecular transfer of the (3)H label from substrate to product GAP reported for the TIM-catalyzed reaction of [1(R)-(3)H]-DHAP in H(2)O (Herlihy, J. M., Maister, S. G., Albery, W. J., and Knowles, J. R. (1976) Biochemistry 15, 5601-5607). The data show that the hydron bound to the carboxylate side chain of Glu-165 in the TIM-enediol(ate) complex is not in chemical equilibrium with those of bulk solvent.

          Related collections

          Author and article information

          Journal
          Biochemistry
          Biochemistry
          0006-2960
          0006-2960
          Feb 22 2005
          : 44
          : 7
          Affiliations
          [1 ] Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, USA.
          Article
          10.1021/bi047954c
          15709774
          f0fad704-7293-439a-af6d-442b2900fff6
          History

          Comments

          Comment on this article