280
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How a Retrotransposon Exploits the Plant's Heat Stress Response for Its Activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.

          Author Summary

          Transposons are programmed to amplify within their host genomes. In defense, hosts have evolved mechanisms to impede transposon activation, often by epigenetic transcriptional silencing. A constant and likely unending arms race between host and invader has brought about different strategies to mutually counteract the tricks of the other. Several such strategies are combined in one transposon in the Arabidopsis genome. Its promoter is devoid of symmetric sites necessary for stable maintenance of repressive DNA methylation, and a reduction of methylation at the remaining cytosines does not activate the element. More sophisticated still: its promoter shares a sequence motif with heat stress-responsive plant genes and is recognized by a heat-induced plant transcription factor. Whenever the plants must activate their heat stress defense under high temperatures, the transposon is able to generate new extrachromosomal DNA copies that can potentially integrate into new sites of the genome. In addition, the heat response is especially strong in tissue with dividing cells, which form consequently the largest amount of extrachromosomal transposon copies. We see this as an example of a “wolf in sheep's clothing” strategy, whereby the transposon becomes visible as such only under specific stress conditions of its host.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          The significance of responses of the genome to challenge.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic sequencing.

            Unique DNA sequences can be determined directly from mouse genomic DNA. A denaturing gel separates by size mixtures of unlabeled DNA fragments from complete restriction and partial chemical cleavages of the entire genome. These lanes of DNA are transferred and UV-crosslinked to nylon membranes. Hybridization with a short 32P-labeled single-stranded probe produces the image of a DNA sequence "ladder" extending from the 3' or 5' end of one restriction site in the genome. Numerous different sequences can be obtained from a single membrane by reprobing. Each band in these sequences represents 3 fg of DNA complementary to the probe. Sequence data from mouse immunoglobulin heavy chain genes from several cell types are presented. The genomic sequencing procedures are applicable to the analysis of genetic polymorphisms, DNA methylation at deoxycytidines, and nucleic acid-protein interactions at single nucleotide resolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression.

              Arabidopsis DREB2A is a key transcription factor of heat- and drought-responsive gene expression, and DREB2A expression is induced by these stresses. We analyzed the DREB2A promoter and found a heat shock element that functions as a cis-acting element in the heat shock (HS)-responsive expression of DREB2A. Among the 21 Arabidopsis heat shock factors, we chose 4 HsfA1-type proteins as candidate transcriptional activators (HsfA1a, HsfA1b, HsfA1d, and HsfA1e) based on transactivation activity and expression patterns. We generated multiple mutants and found that the HS-responsive expression of DREB2A disappeared in hsfa1a/b/d triple and hsfa1a/b/d/e quadruple mutants. Moreover, HS-responsive gene expression, including that of molecular chaperones and transcription factors, was globally and drastically impaired in the hsfa1a/b/d triple mutant, which exhibited greatly reduced tolerance to HS stress. HsfA1 protein accumulation in the nucleus was negatively regulated by their interactions with HSP90, and other factors potentially strongly activate the HsfA1 proteins under HS stress. The hsfa1a/b/d/e quadruple mutant showed severe growth retardation, and many genes were downregulated in this mutant even under non-stress conditions. Our study indicates that HsfA1a, HsfA1b, and HsfA1d function as main positive regulators in HS-responsive gene expression and four HsfA1-type proteins are important in gene expression for normal plant growth.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2014
                30 January 2014
                : 10
                : 1
                : e1004115
                Affiliations
                [1 ]Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
                [2 ]Research Institute of Molecular Pathology, Vienna, Austria; and Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
                National Institute of Genetics, Japan
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: VVC OMS. Performed the experiments: VVC NL SJ LMB AK. Analyzed the data: VVC NL SJ LMB AK OMS. Contributed reagents/materials/analysis tools: VVC AK OMS. Wrote the paper: VVC OMS.

                Article
                PGENETICS-D-13-02791
                10.1371/journal.pgen.1004115
                3907296
                24497839
                f102d87e-bb9f-428c-adea-19e08ffbf522
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 October 2013
                : 28 November 2013
                Page count
                Pages: 12
                Funding
                The work was supported by grants of the Austrian Science Fund (FWF I489 and W1238) to OMS. The funders ( http://www.fwf.ac.at) had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics
                DNA modification
                Gene Expression
                DNA transcription
                Molecular Genetics
                Plant Genetics
                Plant Science
                Plant Genetics

                Genetics
                Genetics

                Comments

                Comment on this article