30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SSU rDNA Divergence in Planktonic Foraminifera: Molecular Taxonomy and Biogeographic Implications

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of planktonic foraminifera in paleoceanography requires taxonomic consistency and precise assessment of the species biogeography. Yet, ribosomal small subunit (SSUr) DNA analyses have revealed that most of the modern morpho-species of planktonic foraminifera are composed of a complex of several distinct genetic types that may correspond to cryptic or pseudo-cryptic species. These genetic types are usually delimitated using partial sequences located at the 3′end of the SSUrDNA, but typically based on empirical delimitation. Here, we first use patristic genetic distances calculated within and among genetic types of the most common morpho-species to show that intra-type and inter-type genetic distances within morpho-species may significantly overlap, suggesting that genetic types have been sometimes inconsistently defined. We further apply two quantitative and independent methods, ABGD (Automatic Barcode Gap Detection) and GMYC (General Mixed Yule Coalescent) to a dataset of published and newly obtained partial SSU rDNA for a more objective assessment of the species status of these genetic types. Results of these complementary approaches are highly congruent and lead to a molecular taxonomy that ranks 49 genetic types of planktonic foraminifera as genuine (pseudo)cryptic species. Our results advocate for a standardized sequencing procedure allowing homogenous delimitations of (pseudo)cryptic species. On the ground of this revised taxonomic framework, we finally provide an integrative taxonomy synthesizing geographic, ecological and morphological differentiations that can occur among the genuine (pseudo)cryptic species. Due to molecular, environmental or morphological data scarcities, many aspects of our proposed integrative taxonomy are not yet fully resolved. On the other hand, our study opens up the potential for a correct interpretation of environmental sequence datasets.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Inferring phylogeny despite incomplete lineage sorting.

          It is now well known that incomplete lineage sorting can cause serious difficulties for phylogenetic inference, but little attention has been paid to methods that attempt to overcome these difficulties by explicitly considering the processes that produce them. Here we explore approaches to phylogenetic inference designed to consider retention and sorting of ancestral polymorphism. We examine how the reconstructability of a species (or population) phylogeny is affected by (a) the number of loci used to estimate the phylogeny and (b) the number of individuals sampled per species. Even in difficult cases with considerable incomplete lineage sorting (times between divergences less than 1 N(e) generations), we found the reconstructed species trees matched the "true" species trees in at least three out of five partitions, as long as a reasonable number of individuals per species were sampled. We also studied the tradeoff between sampling more loci versus more individuals. Although increasing the number of loci gives more accurate trees for a given sampling effort with deeper species trees (e.g., total depth of 10 N(e) generations), sampling more individuals often gives better results than sampling more loci with shallower species trees (e.g., depth = 1 N(e)). Taken together, these results demonstrate that gene sequences retain enough signal to achieve an accurate estimate of phylogeny despite widespread incomplete lineage sorting. Continued improvement in our methods to reconstruct phylogeny near the species level will require a shift to a compound model that considers not only nucleotide or character state substitutions, but also the population genetics processes of lineage sorting. [Coalescence; divergence; population; speciation.].
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequence-based species delimitation for the DNA taxonomy of undescribed insects.

            Cataloging the very large number of undescribed species of insects could be greatly accelerated by automated DNA based approaches, but procedures for large-scale species discovery from sequence data are currently lacking. Here, we use mitochondrial DNA variation to delimit species in a poorly known beetle radiation in the genus Rivacindela from arid Australia. Among 468 individuals sampled from 65 sites and multiple morphologically distinguishable types, sequence variation in three mtDNA genes (cytochrome oxidase subunit 1, cytochrome b, 16S ribosomal RNA) was strongly partitioned between 46 or 47 putative species identified with quantitative methods of species recognition based on fixed unique ("diagnostic") characters. The boundaries between groups were also recognizable from a striking increase in branching rate in clock-constrained calibrated trees. Models of stochastic lineage growth (Yule models) were combined with coalescence theory to develop a new likelihood method that determines the point of transition from species-level (speciation and extinction) to population-level (coalescence) evolutionary processes. Fitting the location of the switches from speciation to coalescent nodes on the ultrametric tree of Rivacindela produced a transition in branching rate occurring at 0.43 Mya, leading to an estimate of 48 putative species (confidence interval for the threshold ranging from 47 to 51 clusters within 2 logL units). Entities delimited in this way exhibited biological properties of traditionally defined species, showing coherence of geographic ranges, broad congruence with morphologically recognized species, and levels of sequence divergence typical for closely related species of insects. The finding of discontinuous evolutionary groupings that are readily apparent in patterns of sequence variation permits largely automated species delineation from DNA surveys of local communities as a scaffold for taxonomy in this poorly known insect group.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation.

              With today's technology for production of molecular sequences, DNA taxonomy and barcoding arose as a new tool for evolutionary biology and ecology. However, their validities still need to be empirically evaluated. Of most importance is the strength of the correlation between morphological taxonomy and molecular divergence and the possibility to define some molecular thresholds. Here, we report measurements of this correlation for two mitochondrial genes (COI and 16S rRNA) within the sub-phylum Crustacea. Perl scripts were developed to ensure objectivity, reproducibility, and exhaustiveness of our tests. Our analysis reveals a general correlation between molecular divergence and taxonomy. This correlation is particularly high for shallow taxonomic levels allowing us to propose a COI universal crustacean threshold to help species delimitation. At higher taxonomic levels this correlation decreases, particularly when comparing different families. Those results plead for DNA use in taxonomy and suggest an operational method to help crustacean species delimitation that is linked to the phylogenetic species definition. This pragmatic tool is expected to fine tune the present classification, and not, as some would have believed, to tear it apart.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                13 August 2014
                : 9
                : 8
                : e104641
                Affiliations
                [1 ]Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5276: Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Université Lyon 1, Villeurbanne, France
                [2 ]Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6112: Laboratoire de Planétologie et de Géodynamique - Bioindicateurs Actuels et Fossiles, Université d'Angers, Angers, France
                [3 ]Zentrum für marine Umweltwissenschaften MARUM, Universität Bremen, Bremen, Germany
                [4 ]Department of Biology, Shinshu University, Matsumoto, Japan
                [5 ]Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7144: Evolution des Protistes et des Ecosystèmes Pélagiques, Université Pierre et Marie Curie-Station Biologique de Roscoff, Roscoff, France
                [6 ]Centre National de la Recherche Scientifique, Centre de Recherche et d'Enseignement de Géosciences de l'Environnement, Université Aix-Marseille, Aix-en-Provence, France
                [7 ]Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5023: Ecologie des Hydrosystèmes Fluviaux, Université Lyon 1, Villeurbanne, France
                [8 ]Institut Universitaire de France, Paris, France
                Institute of Biochemistry and Biology, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interest exist.

                Conceived and designed the experiments: AA FQ RM CD. Performed the experiments: AA YU RM. Analyzed the data: AA CD RM FQ GE. Contributed reagents/materials/analysis tools: CD CdV. Contributed to the writing of the manuscript: AA FQ CD RM GE YU TdGT CdV.

                Article
                PONE-D-14-16690
                10.1371/journal.pone.0104641
                4131912
                25119900
                f104159b-280d-4091-abe9-45395f65976e
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 April 2014
                : 11 July 2014
                Page count
                Pages: 19
                Funding
                The authors declare funding from the following programs (see details for the role of each funders): Grants from the FR41 of Université Lyon 1 (molecular analyses); INSU INTERRVIE program (sampling and molecular analyses); ANR-06-JCJC-0142 PALEO-CTD (sampling); ANR Blanc FORCLIM (sampling); ANR-11-BTBR-0008 OCEANOMICS (molecular analyses). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biogeography
                Ecology
                Biodiversity
                Marine Ecology
                Evolutionary Biology
                Evolutionary Systematics
                Molecular Systematics
                Microbiology
                Organisms
                Protists
                Paleontology
                Paleobiology
                Micropaleontology
                Paleooceanography
                Taxonomy
                Earth Sciences
                Marine and Aquatic Sciences
                Aquatic Environments
                Marine Environments
                Ecology and Environmental Sciences
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All sequences are available from the NCBI database accession numbers KJ633126 to KJ633260.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article