0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum realism: axiomatization and quantification

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of an objective reality in line with the laws of the microscopic world has been the focus of longstanding debates. Recent approaches seem to have reached a consensus at least with respect to one aspect, namely, that the encoding of information about a given observable in a physical degree freedom is a necessary condition for such observable to become an element of the physical reality. Taking this as a fundamental premise and inspired by quantum information theory, here we build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory. Our strategy consists of listing some physically-motivated principles able to characterize quantum realism in a ``metric'' independent manner. We introduce some criteria defining monotones and measures of realism and then search for potential candidates within some celebrated information theories -- those induced by the von Neumann, R\'enyi, and Tsallis entropies. We explicitly construct some classes of entropic quantifiers that are shown to satisfy (almost all of) the proposed axioms and hence can be taken as faithful estimates for the degree of reality (or definiteness) of a given physical observable. Hopefully, our framework may offer a formal ground for further discussions on foundational aspects of quantum mechanics.

          Related collections

          Author and article information

          Journal
          10 October 2021
          Article
          2110.04870
          f11813e2-0b0c-40f1-ba2e-31f1fa0e341e

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          14 pages, 4 figures
          quant-ph

          Quantum physics & Field theory
          Quantum physics & Field theory

          Comments

          Comment on this article