22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative Pharmacology of Risperidone and Paliperidone

      review-article
      Drugs in R&D
      Springer International Publishing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antipsychotics, risperidone, and risperidone’s active metabolite, paliperidone (9-hydroxyrisperidone), are related molecules used for the treatment of schizophrenia and related disorders. Differences in receptor binding, 5-HT 2A/D 2 (serotonin/dopamine) binding ratios, and mitochondrial proteomics suggest that the effects of risperidone and paliperidone on neuronal firing, regulation of mitochondrial function, and movement are different. This review seeks to explore the most significant differences at the molecular level between risperidone and paliperidone, as reported in preclinical studies. Although risperidone shows higher affinity for 5-HT receptors, paliperidone does not fit this profile. Thus, the risperidone 5-HT 2A/D 2 binding ratio is significantly lower than the paliperidone 5-HT 2A/D 2 binding ratio. Paliperidone, similar to lithium and valproate, affects expression levels and phosphorylation of complex I and V proteins in synaptoneurosomal preparations of rat prefrontal cortex, suggesting that paliperidone behaves as a mood stabilizer. It is apparent that the presence of a hydroxyl group in the paliperidone molecule confers increased hydrophilicity to this drug compared with its parent, risperidone; thus, this contributes to differential effects on mitochondrial movement, protein expression, and phosphorylation. These differences are reflected in synaptic plasticity and neuronal firing and have only recently been implicated in the mechanisms of mitochondrial function and movement.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          The axonal transport of mitochondria.

          Organelle transport is vital for the development and maintenance of axons, in which the distances between sites of organelle biogenesis, function, and recycling or degradation can be vast. Movement of mitochondria in axons can serve as a general model for how all organelles move: mitochondria are easy to identify, they move along both microtubule and actin tracks, they pause and change direction, and their transport is modulated in response to physiological signals. However, they can be distinguished from other axonal organelles by the complexity of their movement and their unique functions in aerobic metabolism, calcium homeostasis and cell death. Mitochondria are thus of special interest in relating defects in axonal transport to neuropathies and degenerative diseases of the nervous system. Studies of mitochondrial transport in axons are beginning to illuminate fundamental aspects of the distribution mechanism. They use motors of one or more kinesin families, along with cytoplasmic dynein, to translocate along microtubules, and bidirectional movement may be coordinated through interaction between dynein and kinesin-1. Translocation along actin filaments is probably driven by myosin V, but the protein(s) that mediate docking with actin filaments remain unknown. Signaling through the PI 3-kinase pathway has been implicated in regulation of mitochondrial movement and docking in the axon, and additional mitochondrial linker and regulatory proteins, such as Milton and Miro, have recently been described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Negative Regulator of MAP Kinase is Increased in Depression and Is Necessary and Sufficient for Expression of Depressive Behavior

            Lifetime prevalence (~16%)1 and the economic burden ($100 billion annually)2,3 associated with major depressive disorder (MDD) make it one of the most common and debilitating neurobiological illnesses. To date, the exact cellular and molecular mechanisms underlying the pathophysiology of MDD have not been identified. Here we use whole genome expression profiling of postmortem tissue and demonstrate significantly increased expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in the hippocampal subfields of MDD subjects compared to matched controls. MKP-1, also known as DUSP1, is a member of a family of dual-specificity phosphatases (DUSP) that dephosphorylate both threonine and tyrosine residues and thereby serves as a key negative regulator of MAPK cascade4, a major signaling pathway involved in neuronal plasticity, function and survival5,6. The significance of altered MKP-1 was tested in rodent models of depression and demonstrates that increased hippocampal MKP-1 expression, as a result of stress or viral-mediated gene transfer, causes depressive behaviors. Conversely, chronic antidepressant treatment normalizes the stress-induced MKP-1 expression and behavior, and mice lacking MKP-1 are resilient to stress. These postmortem and preclinical studies identify MKP-1 as a critical factor in MDD pathophysiology and as a novel target for therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder.

              Accumulating evidence suggests that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of bipolar disorder and schizophrenia. It remains unclear whether mitochondrial dysfunction, specifically complex I impairment, is associated with increased oxidative damage and, if so, whether this relationship is specific to bipolar disorder. To evaluate whether decreased levels of the electron transport chain complex I subunit NDUFS7 are associated with complex I activity and increased oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder, schizophrenia, or major depressive disorder. Postmortem prefrontal cortex from patients and controls were assessed using immunoblotting, spectrophotometric, competitive enzyme immunoassay to identify group differences in expression and activity of complex I, and in oxidative damage in mitochondria. University of British Columbia, Vancouver, Canada. Patients Forty-five patients with a psychiatric disorder (15 each with bipolar disorder, schizophrenia, and major depressive disorder) and 15 nonpsychiatric control subjects were studied. Oxidative damage to proteins and mitochondrial complex I activity. Levels of NDUFS7 and complex I activity were decreased significantly in patients with bipolar disorder but were unchanged in those with depression and schizophrenia compared with controls. Protein oxidation, as measured by protein carbonylation, was increased significantly in the bipolar group but not in the depressed or schizophrenic groups compared with controls. We observed increased levels of 3-nitrotyrosine in the bipolar disorder and schizophrenia groups. Impairment of complex I may be associated with increased protein oxidation and nitration in the prefrontal cortex of patients with bipolar disorder. Therefore, complex I activity and mitochondrial dysfunction may be potential therapeutic targets for bipolar disorder.
                Bookmark

                Author and article information

                Contributors
                904-953-2000 , pilarcorena@gmail.com
                Journal
                Drugs R D
                Drugs R D
                Drugs in R&D
                Springer International Publishing (Cham )
                1174-5886
                1179-6901
                6 May 2015
                6 May 2015
                June 2015
                : 15
                : 2
                : 163-174
                Affiliations
                Biochemical consultant, 3682 Summerlin Lane, Jacksonville, FL 32224 USA
                Article
                92
                10.1007/s40268-015-0092-x
                4488186
                25943458
                f1222418-0018-445b-bdd0-dcfc87ae6fed
                © The Author(s) 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Categories
                Review Article
                Custom metadata
                © Springer International Publishing Switzerland 2015

                Comments

                Comment on this article