11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Therapeutic Approaches to the Treatment of Tinnitus

      1 , 2 , 3 , 4
      Annual Review of Pharmacology and Toxicology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tinnitus is a highly prevalent condition that is associated with hearing loss in most cases. In the absence of external stimuli, phantom perceptions of sounds emerge from alterations in neuronal activity within central auditory and nonauditory structures. Pioneering studies using lidocaine revealed that tinnitus is susceptible to pharmacological interventions. However, lidocaine is not effective in all patients, and no other drug has been identified with clear efficacy for the long-term treatment of tinnitus. In this review, we present recent advances in tinnitus research, including more detailed knowledge of its pathophysiology and involved neurotransmitter systems. Moreover, we summarize results from animal and clinical treatment studies as well as from studies that identified tinnitus as a side effect of pharmacological treatments. Finally, we focus on challenges in the development of pharmacological compounds for the treatment of tinnitus, namely the limitations of available animal models and of standardized clinical research methodologies.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Phantom auditory perception (tinnitus): mechanisms of generation and perception.

          Phantom auditory perception--tinnitus--is a symptom of many pathologies. Although there are a number of theories postulating certain mechanisms of its generation, none have been proven yet. This paper analyses the phenomenon of tinnitus from the point of view of general neurophysiology. Existing theories and their extrapolation are presented, together with some new potential mechanisms of tinnitus generation, encompassing the involvement of calcium and calcium channels in cochlear function, with implications for malfunction and aging of the auditory and vestibular systems. It is hypothesized that most tinnitus results from the perception of abnormal activity, defined as activity which cannot be induced by any combination of external sounds. Moreover, it is hypothesized that signal recognition and classification circuits, working on holographic or neuronal network-like representation, are involved in the perception of tinnitus and are subject to plastic modification. Furthermore, it is proposed that all levels of the nervous system, to varying degrees, are involved in tinnitus manifestation. These concepts are used to unravel the inexplicable, unique features of tinnitus and its masking. Some clinical implications of these theories are suggested.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model.

            Ever since Pliny the Elder coined the term tinnitus, the perception of sound in the absence of an external sound source has remained enigmatic. Traditional theories assume that tinnitus is triggered by cochlear damage, but many tinnitus patients present with a normal audiogram, i.e., with no direct signs of cochlear damage. Here, we report that in human subjects with tinnitus and a normal audiogram, auditory brainstem responses show a significantly reduced amplitude of the wave I potential (generated by primary auditory nerve fibers) but normal amplitudes of the more centrally generated wave V. This provides direct physiological evidence of "hidden hearing loss" that manifests as reduced neural output from the cochlea, and consequent renormalization of neuronal response magnitude within the brainstem. Employing an established computational model, we demonstrate how tinnitus could arise from a homeostatic response of neurons in the central auditory system to reduced auditory nerve input in the absence of elevated hearing thresholds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reversing pathological neural activity using targeted plasticity.

              Brain changes in response to nerve damage or cochlear trauma can generate pathological neural activity that is believed to be responsible for many types of chronic pain and tinnitus. Several studies have reported that the severity of chronic pain and tinnitus is correlated with the degree of map reorganization in somatosensory and auditory cortex, respectively. Direct electrical or transcranial magnetic stimulation of sensory cortex can temporarily disrupt these phantom sensations. However, there is as yet no direct evidence for a causal role of plasticity in the generation of pain or tinnitus. Here we report evidence that reversing the brain changes responsible can eliminate the perceptual impairment in an animal model of noise-induced tinnitus. Exposure to intense noise degrades the frequency tuning of auditory cortex neurons and increases cortical synchronization. Repeatedly pairing tones with brief pulses of vagus nerve stimulation completely eliminated the physiological and behavioural correlates of tinnitus in noise-exposed rats. These improvements persisted for weeks after the end of therapy. This method for restoring neural activity to normal may be applicable to a variety of neurological disorders.
                Bookmark

                Author and article information

                Journal
                Annual Review of Pharmacology and Toxicology
                Annu. Rev. Pharmacol. Toxicol.
                Annual Reviews
                0362-1642
                1545-4304
                January 06 2019
                January 06 2019
                : 59
                : 1
                : 291-313
                Affiliations
                [1 ]Department of Psychiatry and Psychotherapy, and Interdisciplinary Tinnitus Clinic, University of Regensburg, 93053 Regensburg, Germany;
                [2 ]Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres,” Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
                [3 ]Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
                [4 ]Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
                Article
                10.1146/annurev-pharmtox-010818-021556
                30044727
                f12a2363-7d6b-42d5-b1b4-eef79742f2d6
                © 2019
                History

                Comments

                Comment on this article