13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Neurodoping: Brain Stimulation as a Performance-Enhancing Measure

      Sports Medicine
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Doping may be defined, broadly, as the use of unauthorised means to increase performance in sport. Doping is most commonly associated with the use of drugs. In this paper, I discuss the use of emerging techniques for the modulation of brain activity in healthy people using electric or magnetic fields, and suggest how they might be used to enhance physical and mental performance in sports. I will suggest that neurodoping may have different uses in different sports, and I argue that each sport must determine whether neurodoping should be considered as cheating, or should be considered a legitimate aid to training or performance.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological basis of transcranial direct current stimulation.

          Since the rediscovery of transcranial direct current stimulation (tDCS) about 10 years ago, interest in tDCS has grown exponentially. A noninvasive stimulation technique that induces robust excitability changes within the stimulated cortex, tDCS is increasingly being used in proof-of-principle and stage IIa clinical trials in a wide range of neurological and psychiatric disorders. Alongside these clinical studies, detailed work has been performed to elucidate the mechanisms underlying the observed effects. In this review, the authors bring together the results from these pharmacological, neurophysiological, and imaging studies to describe their current knowledge of the physiological effects of tDCS. In addition, the theoretical framework for how tDCS affects motor learning is proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increasing human brain excitability by transcranial high-frequency random noise stimulation.

            For >20 years, noninvasive transcranial stimulation techniques like repetitive transcranial magnetic stimulation (rTMS) and direct current stimulation (tDCS) have been used to induce neuroplastic-like effects in the human cortex, leading to the activity-dependent modification of synaptic transmission. Here, we introduce a novel method of electrical stimulation: transcranial random noise stimulation (tRNS), whereby a random electrical oscillation spectrum is applied over the motor cortex. tRNS induces consistent excitability increases lasting 60 min after stimulation. These effects have been observed in 80 subjects through both physiological measures and behavioral tasks. Higher frequencies (100-640 Hz) appear to be responsible for generating this excitability increase, an effect that may be attributed to the repeated opening of Na(+) channels. In terms of efficacy tRNS appears to possess at least the same therapeutic potential as rTMS/tDCS in diseases such as depression, while furthermore avoiding the constraint of current flow direction sensitivity characteristic of tDCS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans

              Summary Neurons have a striking tendency to engage in oscillatory activities. One important type of oscillatory activity prevalent in the motor system occurs in the beta frequency band, at about 20 Hz. It is manifest during the maintenance of tonic contractions and is suppressed prior to and during voluntary movement [1–7]. This and other correlative evidence suggests that beta activity might promote tonic contraction, while impairing motor processing related to new movements [3, 8, 9]. Hence, bursts of beta activity in the cortex are associated with a strengthening of the motor effects of sensory feedback during tonic contraction and with reductions in the velocity of voluntary movements [9–11]. Moreover, beta activity is increased when movement has to be resisted or voluntarily suppressed [7, 12, 13]. Here we use imperceptible transcranial alternating-current stimulation to entrain cortical activity at 20 Hz in healthy subjects and show that this slows voluntary movement. The present findings are the first direct evidence of causality between any physiological oscillatory brain activity and concurrent motor behavior in the healthy human and help explain how the exaggerated beta activity found in Parkinson's disease can lead to motor slowing in this illness [14].
                Bookmark

                Author and article information

                Journal
                Sports Medicine
                Sports Med
                Springer Science and Business Media LLC
                0112-1642
                1179-2035
                August 2013
                March 16 2013
                August 2013
                : 43
                : 8
                : 649-653
                Article
                10.1007/s40279-013-0027-z
                23504390
                f12ef6e8-e9b2-4a3f-8129-3f29fa32d882
                © 2013

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article