113
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Transcriptome Profiling of the Early Response to Magnaporthe oryzae in Durable Resistant vs Susceptible Rice ( Oryza sativa L.) Genotypes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Durable resistance to blast, the most significant fungal disease of rice, represents an agronomically relevant character. Gigante Vercelli (GV) and Vialone Nano (VN) are two old temperate japonica Italian rice cultivars with contrasting response to blast infection: GV displays durable and broad resistance while VN is highly susceptible. RNA-seq was used to dissect the early molecular processes deployed during the resistance response of GV at 24 h after blast inoculation. Differential gene expression analysis identified 1,070 and 1,484 modulated genes, of which 726 and 699 were up regulated in response to infection in GV and VN, respectively. Gene ontology (GO) enrichment analyses revealed a set of GO terms enriched in both varieties but, despite this commonality, the gene sets contributing to common GO enriched terms were dissimilar. The expression patterns of genes grouped in GV-specific enriched GO terms were examined in detail including at the transcript isoform level. GV exhibited a dramatic up-regulation of genes encoding diterpene phytoalexin biosynthetic enzymes, flavin-containing monooxygenase, class I chitinase and glycosyl hydrolase 17. The sensitivity and high dynamic range of RNA-seq allowed the identification of genes critically involved in conferring GV resistance during the early steps of defence perception-signalling. These included chitin oligosaccharides sensing factors, wall associated kinases, MAPK cascades and WRKY transcription factors. Candidate genes with expression patterns consistent with a potential role as GV-specific functional resistance ( R) gene(s) were also identified. This first application of RNA-seq to dissect durable blast resistance supports a crucial role of the prompt induction of a battery of responses including defence-related genes as well as members of gene families involved in signalling and pathogen-related gene expression regulation.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional landscape of the yeast genome defined by RNA sequencing.

          The identification of untranslated regions, introns, and coding regions within an organism remains challenging. We developed a quantitative sequencing-based method called RNA-Seq for mapping transcribed regions, in which complementary DNA fragments are subjected to high-throughput sequencing and mapped to the genome. We applied RNA-Seq to generate a high-resolution transcriptome map of the yeast genome and demonstrated that most (74.5%) of the nonrepetitive sequence of the yeast genome is transcribed. We confirmed many known and predicted introns and demonstrated that others are not actively used. Alternative initiation codons and upstream open reading frames also were identified for many yeast genes. We also found unexpected 3'-end heterogeneity and the presence of many overlapping genes. These results indicate that the yeast transcriptome is more complex than previously appreciated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phytoalexins in defense against pathogens.

            Plants use an intricate defense system against pests and pathogens, including the production of low molecular mass secondary metabolites with antimicrobial activity, which are synthesized de novo after stress and are collectively known as phytoalexins. In this review, we focus on the biosynthesis and regulation of camalexin, and its role in plant defense. In addition, we detail some of the phytoalexins produced by a range of crop plants from Brassicaceae, Fabaceae, Solanaceae, Vitaceae and Poaceae. This includes the very recently identified kauralexins and zealexins produced by maize, and the biosynthesis and regulation of phytoalexins produced by rice. Molecular approaches are helping to unravel some of the mechanisms and reveal the complexity of these bioactive compounds, including phytoalexin action and metabolism. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis.

              Plant sensing of invading pathogens triggers massive metabolic reprogramming, including the induction of secondary antimicrobial compounds known as phytoalexins. We recently reported that MPK3 and MPK6, two pathogen-responsive mitogen-activated protein kinases, play essential roles in the induction of camalexin, the major phytoalexin in Arabidopsis thaliana. In search of the transcription factors downstream of MPK3/MPK6, we found that WRKY33 is required for MPK3/MPK6-induced camalexin biosynthesis. In wrky33 mutants, both gain-of-function MPK3/MPK6- and pathogen-induced camalexin production are compromised, which is associated with the loss of camalexin biosynthetic gene activation. WRKY33 is a pathogen-inducible transcription factor, whose expression is regulated by the MPK3/MPK6 cascade. Chromatin immunoprecipitation assays reveal that WRKY33 binds to its own promoter in vivo, suggesting a potential positive feedback regulatory loop. Furthermore, WRKY33 is a substrate of MPK3/MPK6. Mutation of MPK3/MPK6 phosphorylation sites in WRKY33 compromises its ability to complement the camalexin induction in the wrky33 mutant. Using a phospho-protein mobility shift assay, we demonstrate that WRKY33 is phosphorylated by MPK3/MPK6 in vivo in response to Botrytis cinerea infection. Based on these data, we conclude that WRKY33 functions downstream of MPK3/MPK6 in reprogramming the expression of camalexin biosynthetic genes, which drives the metabolic flow to camalexin production in Arabidopsis challenged by pathogens.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                12 December 2012
                : 7
                : 12
                : e51609
                Affiliations
                [1 ]Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Genomics Research Centre, Fiorenzuola d’Arda, Piacenza, Italy
                [2 ]Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Rice Research Unit, Vercelli, Italy
                [3 ]Parco Tecnologico Padano, Lodi, Italy
                [4 ]Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Department of Plant Biology and Crop Production, Roma, Italy
                Ghent University, Belgium
                Author notes

                Competing Interests: The authors have declared that no competing interests exist

                Conceived and designed the experiments: PB EL L. Cattivelli GV. Performed the experiments: PB CB LO SU L. Crispino PA. Analyzed the data: PB CB LO SU L. Crispino PA PP. Contributed reagents/materials/analysis tools: PB PP L. Cattivelli GV. Wrote the paper: PB PP EL L. Cattivelli GV.

                Article
                PONE-D-12-21525
                10.1371/journal.pone.0051609
                3520944
                23251593
                f12ff2c7-6eb9-4e81-82eb-0a92b2c20ab5
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 July 2012
                : 2 November 2012
                Page count
                Pages: 26
                Funding
                This study was funded by grants from AGER Foundation, (RISINNOVA project grant n° 2010–2369) to GV and L. Cattivelli. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Agricultural Biotechnology
                Sustainable Agriculture
                Biology
                Biochemistry
                Plant Biochemistry
                Computational Biology
                Genomics
                Genome Expression Analysis
                Molecular Genetics
                Gene Expression
                Genetics
                Gene Expression
                Plant Genetics
                Genomics
                Functional Genomics
                Genome Expression Analysis
                Molecular Cell Biology
                Signal Transduction
                Signaling in Selected Disciplines
                Plant Signaling
                Gene Expression
                Plant Science
                Plant Pathology
                Plant Pathogens
                Plant Biochemistry
                Medicine
                Infectious Diseases
                Fungal Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article