108
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota

      , , , , ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gut microbes supply the human body with energy from dietary polysaccharides through carbohydrate active enzymes, or CAZymes, which are absent in the human genome. These enzymes target polysaccharides from terrestrial plants that dominated diet throughout human evolution. The array of CAZymes in gut microbes is highly diverse, exemplified by the human gut symbiont Bacteroides thetaiotaomicron, which contains 261 glycoside hydrolases and polysaccharide lyases, as well as 208 homologues of susC and susD-genes coding for two outer membrane proteins involved in starch utilization. A fundamental question that, to our knowledge, has yet to be addressed is how this diversity evolved by acquiring new genes from microbes living outside the gut. Here we characterize the first porphyranases from a member of the marine Bacteroidetes, Zobellia galactanivorans, active on the sulphated polysaccharide porphyran from marine red algae of the genus Porphyra. Furthermore, we show that genes coding for these porphyranases, agarases and associated proteins have been transferred to the gut bacterium Bacteroides plebeius isolated from Japanese individuals. Our comparative gut metagenome analyses show that porphyranases and agarases are frequent in the Japanese population and that they are absent in metagenome data from North American individuals. Seaweeds make an important contribution to the daily diet in Japan (14.2 g per person per day), and Porphyra spp. (nori) is the most important nutritional seaweed, traditionally used to prepare sushi. This indicates that seaweeds with associated marine bacteria may have been the route by which these novel CAZymes were acquired in human gut bacteria, and that contact with non-sterile food may be a general factor in CAZyme diversity in human gut microbes.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins.

          The fortran program ESPript was created in 1993, to display on a PostScript figure multiple sequence alignments adorned with secondary structure elements. A web server was made available in 1999 and ESPript has been linked to three major web tools: ProDom which identifies protein domains, PredictProtein which predicts secondary structure elements and NPS@ which runs sequence alignment programs. A web server named ENDscript was created in 2002 to facilitate the generation of ESPript figures containing a large amount of information. ENDscript uses programs such as BLAST, Clustal and PHYLODENDRON to work on protein sequences and such as DSSP, CNS and MOLSCRIPT to work on protein coordinates. It enables the creation, from a single Protein Data Bank identifier, of a multiple sequence alignment figure adorned with secondary structure elements of each sequence of known 3D structure. Similar 3D structures are superimposed in turn with the program PROFIT and a final figure is drawn with BOBSCRIPT, which shows sequence and structure conservation along the Calpha trace of the query. ESPript and ENDscript are available at http://genopole.toulouse.inra.fr/ESPript.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A graphical user interface to the CCP4 program suite.

            CCP4i is a graphical user interface that makes running programs from the CCP4 suite simpler and quicker. It is particularly directed at inexperienced users and tightly linked to introductory and scientific documentation. It also provides a simple project-management system and visualization tools. The system is readily extensible and not specific to CCP4 software.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm*

              Trillions of microbes inhabit the distal gut of adult humans. They have evolved to compete efficiently for nutrients, including a wide array of chemically diverse, complex glycans present in our diets, secreted by our intestinal mucosa, and displayed on the surfaces of other gut microbes. Here, we review how members of the Bacteroidetes, one of two dominant gut-associated bacterial phyla, process complex glycans using a series of similarly patterned, cell envelope-associated multiprotein systems. These systems provide insights into how gut, as well as terrestrial and aquatic, Bacteroidetes survive in highly competitive ecosystems.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                April 2010
                April 2010
                : 464
                : 7290
                : 908-912
                Article
                10.1038/nature08937
                20376150
                f1531d35-9d64-44f7-b80e-4a54d79c046a
                © 2010

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article