27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ProtVec: A Continuous Distributed Representation of Biological Sequences

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose a new approach for representing biological sequences. This method, named protein-vectors or ProtVec for short, can be utilized in bioinformatics applications such as family classification, protein visualization, structure prediction, disordered protein identification, and protein-protein interaction prediction. Using the Skip-gram neural networks, protein sequences are represented with a single dense n-dimensional vector. This method was evaluated by classifying protein sequences obtained from Swiss-Prot belonging to 7,027 protein families where an average family classification accuracy of \(94\%\pm 0.03\%\) was obtained, outperforming existing family classification methods. In addition, our model was used to predict disordered proteins from structured proteins. Two databases of disordered sequences were used: the DisProt database as well as a database featuring the disordered regions of nucleoporins rich with phenylalanine-glycine repeats (FG-Nups). Using support vector machine classifiers, FG-Nup sequences were distinguished from structured Protein Data Bank (PDB) sequences with 99.81\% accuracy, and unstructured DisProt sequences from structured DisProt sequences with 100.0\% accuracy. These results indicate that by only providing sequence data for various proteins into this model, information about protein structure can be determined with high accuracy. This so-called embedding model needs to be trained only once and can then be used to ascertain a diverse set of information regarding the proteins of interest. In addition, this representation can be considered as pre-training for various applications of deep learning in bioinformatics.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          Artemis: sequence visualization and annotation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Function and structure of inherently disordered proteins.

            The application of bioinformatics methodologies to proteins inherently lacking 3D structure has brought increased attention to these macromolecules. Here topics concerning these proteins are discussed, including their prediction from amino acid sequence, their enrichment in eukaryotes compared to prokaryotes, their more rapid evolution compared to structured proteins, their organization into specific groups, their structural preferences, their half-lives in cells, their contributions to signaling diversity (via high contents of multiple-partner binding sites, post-translational modifications, and alternative splicing), their distinct functional repertoire compared to that of structured proteins, and their involvement in diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of coupled folding and binding of an intrinsically disordered protein.

              Protein folding and binding are analogous processes, in which the protein 'searches' for favourable intramolecular or intermolecular interactions on a funnelled energy landscape. Many eukaryotic proteins are disordered under physiological conditions, and fold into ordered structures only on binding to their cellular targets. The mechanism by which folding is coupled to binding is poorly understood, but it has been hypothesized on theoretical grounds that the binding kinetics may be enhanced by a 'fly-casting' effect, where the disordered protein binds weakly and non-specifically to its target and folds as it approaches the cognate binding site. Here we show, using NMR titrations and (15)N relaxation dispersion, that the phosphorylated kinase inducible activation domain (pKID) of the transcription factor CREB forms an ensemble of transient encounter complexes on binding to the KIX domain of the CREB binding protein. The encounter complexes are stabilized primarily by non-specific hydrophobic contacts, and evolve by way of an intermediate to the fully bound state without dissociation from KIX. The carboxy-terminal helix of pKID is only partially folded in the intermediate, and becomes stabilized by intermolecular interactions formed in the final bound state. Future applications of our method will provide new understanding of the molecular mechanisms by which intrinsically disordered proteins perform their diverse biological functions.
                Bookmark

                Author and article information

                Journal
                2015-03-17
                Article
                10.1371/journal.pone.0141287
                1503.05140
                f15bf65d-535f-4395-99f0-255a00edd96a

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                PLoS ONE 10(11): e0141287, 2015
                q-bio.QM cs.AI cs.LG q-bio.GN

                Quantitative & Systems biology,Artificial intelligence,Genetics
                Quantitative & Systems biology, Artificial intelligence, Genetics

                Comments

                Comment on this article