84
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick feeding phases. These data set the foundation for in depth I. scapularis tick feeding physiology and TBD transmission studies.

          Author Summary

          Ixodes scapularis, the blacklegged tick or the deer tick, is among the most medically important ticks that transmit human tick borne disease agents including the spirochaete Lyme disease agent. To develop new tick control methods, a deeper understanding of how the tick feeds is needed. We collected saliva from rabbit fed blacklegged ticks every 24 h through five days of feeding and towards the end of feeding. We used novel proteomic technologies (Liquid Chromotography–Tandem Mass Spectrometry) to sequence and identify proteins in tick saliva. The main finding is that ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's way to avoid the host's defense to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. This will influence how to design effective anti-tick vaccine antigens to stop disease agent transmission. This is the first comprehensive study of proteins in blacklegged tick saliva that provides insight into the molecular mechanisms that are at play at the tick feeding site every 24 h.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi.

            The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lipocalin protein family: structure and function.

              The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                11 January 2016
                January 2016
                : 10
                : 1
                : e0004323
                Affiliations
                [1 ]Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
                [2 ]Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
                [3 ]Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
                [4 ]Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
                [5 ]Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
                Johns Hopkins Bloomberg School of Public Health, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TKK LT AM. Performed the experiments: TKK LT AFMP JRY AM. Analyzed the data: TKK LT AFMP JM IdSV AM. Contributed reagents/materials/analysis tools: AM JRY. Wrote the paper: TKK LT AFMP IdSV AM.

                Article
                PNTD-D-15-01697
                10.1371/journal.pntd.0004323
                4709002
                26751078
                f16225e0-67c6-40cc-af6c-47b07e2db65a
                © 2016 Kim et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 30 September 2015
                : 2 December 2015
                Page count
                Figures: 7, Tables: 2, Pages: 35
                Funding
                This research was supported by National Institutes of Health grants (AI081093, AI093858, AI074789, AI074789-01A1S1) to AM and National Center for Research Resources (5P41RR011823) and National Institute of General Medical Sciences (8P41GM103533) to JRY. The open access publishing fees for this article have been covered by the Texas A&M University Online Access to Knowledge (OAK) Fund, supported by the University Libraries and the Office of the Vice President for Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD003214.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article