25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Rebuilding community ecology from functional traits.

          There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist.

            A recent increase in studies of β diversity has yielded a confusing array of concepts, measures and methods. Here, we provide a roadmap of the most widely used and ecologically relevant approaches for analysis through a series of mission statements. We distinguish two types of β diversity: directional turnover along a gradient vs. non-directional variation. Different measures emphasize different properties of ecological data. Such properties include the degree of emphasis on presence/absence vs. relative abundance information and the inclusion vs. exclusion of joint absences. Judicious use of multiple measures in concert can uncover the underlying nature of patterns in β diversity for a given dataset. A case study of Indonesian coral assemblages shows the utility of a multi-faceted approach. We advocate careful consideration of relevant questions, matched by appropriate analyses. The rigorous application of null models will also help to reveal potential processes driving observed patterns in β diversity. © 2010 Blackwell Publishing Ltd/CNRS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional diversity: back to basics and looking forward.

              Functional diversity is a component of biodiversity that generally concerns the range of things that organisms do in communities and ecosystems. Here, we review how functional diversity can explain and predict the impact of organisms on ecosystems and thereby provide a mechanistic link between the two. Critical points in developing predictive measures of functional diversity are the choice of functional traits with which organisms are distinguished, how the diversity of that trait information is summarized into a measure of functional diversity, and that the measures of functional diversity are validated through quantitative analyses and experimental tests. There is a vast amount of trait information available for plant species and a substantial amount for animals. Choosing which traits to include in a particular measure of functional diversity will depend on the specific aims of a particular study. Quantitative methods for choosing traits and for assigning weighting to traits are being developed, but need much more work before we can be confident about trait choice. The number of ways of measuring functional diversity is growing rapidly. We divide them into four main groups. The first, the number of functional groups or types, has significant problems and researchers are more frequently using measures that do not require species to be grouped. Of these, some measure diversity by summarizing distances between species in trait space, some by estimating the size of the dendrogram required to describe the difference, and some include information about species' abundances. We show some new and important differences between these, as well as what they indicate about the responses of assemblages to loss of individuals. There is good experimental and analytical evidence that functional diversity can provide a link between organisms and ecosystems but greater validation of measures is required. We suggest that non-significant results have a range of alternate explanations that do not necessarily contradict positive effects of functional diversity. Finally, we suggest areas for development of techniques used to measure functional diversity, highlight some exciting questions that are being addressed using ideas about functional diversity, and suggest some directions for novel research.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: InvestigationRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                19 April 2018
                2018
                : 13
                : 4
                : e0196066
                Affiliations
                [1 ] Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
                [2 ] Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil, São Paulo, Brazil
                National and Kapodistrian University of Athens, GREECE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-8317-4767
                Article
                PONE-D-17-11477
                10.1371/journal.pone.0196066
                5908149
                29672575
                f1642b72-db21-45fe-a38f-edd37812e7d3
                © 2018 Leão-Pires et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 March 2017
                : 5 April 2018
                Page count
                Figures: 6, Tables: 1, Pages: 20
                Funding
                Funded by: Fundação de Amparo à Pesquisa do Estado de São Paulo (BR)
                Award ID: 2008/54472-2
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001807, Fundação de Amparo à Pesquisa do Estado de São Paulo;
                Award ID: 2010/52321-7
                Funded by: funder-id http://dx.doi.org/10.13039/501100001807, Fundação de Amparo à Pesquisa do Estado de São Paulo;
                Award ID: 2014/23677-9
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100003593, Conselho Nacional de Desenvolvimento Científico e Tecnológico;
                Award ID: 563075/2010-4
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100002322, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior;
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100002322, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior;
                Award Recipient :
                TALP and AML were supported by a Master scholarship funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). RJS thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (CNPq proc. 563075/2010-4) for financial support. The study design, data collection and analysis of the project was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP 2008/54472-2 and 2014/23677-9 and SISBIOTA Project FAPESP proc. 2010/52321-7 and Graduate Program in Ecology (UNICAMP).
                Categories
                Research Article
                Biology and Life Sciences
                Ecology
                Community Ecology
                Community Structure
                Ecology and Environmental Sciences
                Ecology
                Community Ecology
                Community Structure
                Biology and Life Sciences
                Taxonomy
                Computer and Information Sciences
                Data Management
                Taxonomy
                Biology and Life Sciences
                Biogeography
                Phylogeography
                Ecology and Environmental Sciences
                Biogeography
                Phylogeography
                Earth Sciences
                Geography
                Biogeography
                Phylogeography
                Biology and Life Sciences
                Evolutionary Biology
                Population Genetics
                Phylogeography
                Biology and Life Sciences
                Genetics
                Population Genetics
                Phylogeography
                Biology and Life Sciences
                Population Biology
                Population Genetics
                Phylogeography
                Biology and Life Sciences
                Ecology
                Ecological Metrics
                Species Diversity
                Ecology and Environmental Sciences
                Ecology
                Ecological Metrics
                Species Diversity
                Biology and Life Sciences
                Ecology
                Community Ecology
                Ecology and Environmental Sciences
                Ecology
                Community Ecology
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Systematics
                Phylogenetics
                Animal Phylogenetics
                Biology and Life Sciences
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Animal Phylogenetics
                Computer and Information Sciences
                Data Management
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Animal Phylogenetics
                Biology and Life Sciences
                Zoology
                Animal Phylogenetics
                Biology and Life Sciences
                Developmental Biology
                Life Cycles
                Tadpoles
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Systematics
                Phylogenetics
                Biology and Life Sciences
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Computer and Information Sciences
                Data Management
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article