12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accretion of clumpy cold gas onto massive black hole binaries: a possible fast route to binary coalescence

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In currently favoured hierarchical cosmologies, the formation of massive black hole binaries (MBHBs) following galaxy mergers is unavoidable. Still, due the complex physics governing the (hydro)dynamics of the post-merger dense environment of stars and gas in galactic nuclei, the final fate of those MBHBs is still unclear. In gas-rich environments, it is plausible that turbulence and gravitational instabilities feed gas to the nucleus in the form of a series of cold incoherent clumps, thus providing a way to exchange energy and angular momentum between the MBHB and its surroundings. Within this context, we present a suite of smoothed-particle-hydrodynamical models to study the evolution of a sequence of near-radial turbulent gas clouds as they infall towards equal-mass, circular MBHBs. We focus on the dynamical response of the binary orbit to different levels of anisotropy of the incoherent accretion events. Compared to a model extrapolated from a set of individual cloud-MBHB interactions, we find that accretion increases considerably and the binary evolution is faster. This occurs because the continuous infall of clouds drags inwards circumbinary gas left behind by previous accretion events, thus promoting a more effective exchange of angular momentum between the MBHB and the gas. These results suggest that sub-parsec MBHBs efficiently evolve towards coalescence during the interaction with a sequence of individual gas pockets.

          Related collections

          Author and article information

          Journal
          15 January 2018
          Article
          1801.04937
          f1659b6d-acd2-47af-b6d1-f9519917727f

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          17 pages, 17 figures. Submitted to MNRAS. Companion paper (Maureira-Fredes et al.) to be posted in a few days
          astro-ph.HE astro-ph.GA

          Comments

          Comment on this article