17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Outbreaks of Illness Associated with Recreational Water — United States, 2011–2012

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Outbreaks of illness associated with recreational water use result from exposure to chemicals or infectious pathogens in recreational water venues that are treated (e.g., pools and hot tubs or spas) or untreated (e.g., lakes and oceans). For 2011–2012, the most recent years for which finalized data were available, public health officials from 32 states and Puerto Rico reported 90 recreational water–associated outbreaks to CDC’s Waterborne Disease and Outbreak Surveillance System (WBDOSS) via the National Outbreak Reporting System (NORS). The 90 outbreaks resulted in at least 1,788 cases, 95 hospitalizations, and one death. Among 69 (77%) outbreaks associated with treated recreational water, 36 (52%) were caused by Cryptosporidium. Among 21 (23%) outbreaks associated with untreated recreational water, seven (33%) were caused by Escherichia coli (E. coli O157:H7 or E. coli O111). Guidance, such as the Model Aquatic Health Code (MAHC), for preventing and controlling recreational water–associated outbreaks can be optimized when informed by national outbreak and laboratory (e.g., molecular typing of Cryptosporidium) data. A recreational water–associated outbreak is the occurrence of similar illnesses in two or more persons, epidemiologically linked by location and time of exposure to recreational water or recreational water–associated chemicals volatilized into the air surrounding the water. Public health officials in the 50 states, the District of Columbia, U.S. territories, and Freely Associated States* voluntarily report outbreaks of recreational water–associated illness to CDC. In 2010, waterborne outbreaks became nationally notifiable. This report summarizes data on recreational water–associated outbreaks electronically reported by October 30, 2014 to CDC’s WBDOSS (http://www.cdc.gov/healthywater/surveillance/) for 2011 and 2012 via NORS.† Data requested for each outbreak include the number of cases,§ hospitalizations, and deaths; etiology; setting (e.g., hotel) and venue (e.g., hot tub or spa) where the exposure occurred; earliest illness onset date; and illness type. All outbreaks are classified according to the strength of data implicating recreational water as the outbreak vehicle (1).¶ Outbreak reports classified as Class I have the strongest supporting epidemiologic, clinical laboratory and environmental health data, and those classified as Class IV, the weakest. Classification does not assess adequacy or completeness of investigations.** Negative binomial regression (PROC GENMOD in SAS 9.3 [Cary, NC]) was used to assess trends in the number of outbreaks over time. For the years 2011 and 2012, public health officials from 32 states and Puerto Rico reported 90 recreational water–associated outbreaks (http://www.cdc.gov/healthywater/surveillance/rec-water-tables-figures.html) (Figure 1), which resulted in at least 1,788 cases, 95 (5%) hospitalizations, and one death. Etiology was confirmed for 73 (81%) outbreaks: 69 (77%) outbreaks were caused by infectious pathogens, including two outbreaks with multiple etiologies, and four (4%) by chemicals (Table). Among the outbreaks caused by infectious pathogens, 37 (54%) were caused by Cryptosporidium. On the basis of data reported to CDC, 37 (41%) of the 90 outbreak reports were categorized as class IV. Outbreaks associated with treated recreational water accounted for 69 (77%) of the 90 outbreaks reported for 2011–2012, and resulted in at least 1,309 cases, 73 hospitalizations, and one reported death. The median number of cases reported for these outbreaks was seven (range: 2–144 cases). Hotels (e.g., hotel, motel, lodge, or inn) were the setting of 13 (19%) of the treated recreational water–associated outbreaks. Twelve (92%) of these 13 outbreaks started outside of June–August; ten (77%) were at least in part associated with a spa. Among the 69 outbreaks, 36 (52%) were caused by Cryptosporidium. The 69 outbreaks had a seasonal distribution, with 42 (61%) starting in June–August (Figure 1). Acute gastrointestinal illness was the disease manifestation in 34 (81%) of these summer outbreaks, with Cryptosporidium causing 32 (94%) of them. Since 1988, the year that the first U.S. treated recreational water–associated outbreak of cryptosporidiosis was detected (2,3) (Figure 2), the number of these outbreaks reported annually (range: 0–40 outbreaks) has significantly increased (negative binomial regression; p<0.001). Incidence of these cryptosporidiosis outbreaks has also, at least in part, driven the significant increase (negative binomial regression; p<0.001) in the overall number of recreational water–associated outbreaks reported annually (range: 6–84). Summary What is already known on this topic? Treated and untreated recreational water–associated outbreaks occur throughout the United States and their incidence has been increasing in recent years. CDC collects data on waterborne outbreaks electronically submitted by the 50 states, the District of Columbia, U.S. territories, and Freely Associated States to CDC’s Waterborne Disease and Outbreak Surveillance System via the National Outbreak Reporting System. What is added by this report? For 2011–2012, a total of 90 recreational water–associated outbreaks were reported to CDC, resulting in at least 1,788 cases, 95 hospitalizations, and one death. Cryptosporidium caused over half of the outbreaks associated with treated recreational water venues (e.g., pools). Escherichia coli O157:H7 and O111 caused one third of outbreaks associated with untreated recreational water (e.g., lakes). What are the implications for public health practice? Guidance, such as the Model Aquatic Health Code (MAHC), to prevent and control recreational water–associated outbreaks can be optimized when informed by national outbreak and laboratory (e.g., molecular typing of Cryptosporidium) data. For 2011–2012, 21 (23%) outbreaks were associated with untreated recreational water. These outbreaks resulted in at least 479 cases and 22 hospitalizations. The median number of cases reported for these outbreaks was 16 (range: 2–125). Twenty (95%) of these outbreaks were associated with fresh water; 18 (86%) began in June–August; and seven (33%) were caused by E. coli O157:H7 or O111. One outbreak associated with exposure to cyanobacterial toxins was reported. Discussion Cryptosporidium continues to be the dominant etiology of recreational water–associated outbreaks. Half of all treated recreational water–associated outbreaks reported for 2011–2012 were caused by Cryptosporidium. Among treated recreational water–associated outbreaks of gastrointestinal illness that began in June–August, >90% were caused by Cryptosporidium, an extremely chlorine-tolerant parasite that can survive in water at CDC-recommended chlorine levels (1–3 mg/L) and pH (7.2–7.8) for >10 days (4). In contrast, among 14 untreated recreational water–associated outbreaks of gastrointestinal illness starting in June–August, 7% (one) were caused by Cryptosporidium. The decreased diversity of infectious etiologies causing treated recreational water–associated outbreaks is likely a consequence of the aquatic sector’s reliance on halogen disinfection (e.g., chlorine or bromine) and maintenance of proper pH, which are well documented to inactivate most infectious pathogens within minutes (5). Continued reporting of treated recreational water–associated outbreaks caused by chlorine-intolerant pathogens (e.g., E. coli O157:H7 and norovirus) highlights the need for continued vigilance in maintaining water quality (i.e., disinfectant level and pH), as has been recommended for decades (5). In the United States, codes regulating public treated recreational water venues are independently written and enforced by individual state or local agencies; the consequent variation in the codes is a potential barrier to preventing and controlling outbreaks associated with these venues. In August 2014, CDC released the first edition of MAHC (http://www.cdc.gov/mahc), a comprehensive set of science-based and best-practice recommendations to reduce risk for illness and injury at public, treated recreational water venues. MAHC represents the culmination of a 7-year, multi-stakeholder effort and is an evolving resource that addresses emerging public health threats, such as treated recreational water-associated outbreaks of cryptosporidiosis, by incorporating the latest scientifically validated technologies that inactivate or remove infectious pathogens. For example, MAHC recommends additional water treatment (e.g., ultraviolet light or ozone) to inactivate Cryptosporidium oocysts at venues where WBDOSS data indicate there is increased risk for transmission. MAHC recommendations can be voluntarily adopted, in part or as a whole, by state and local jurisdictions. The number of reported untreated recreational water–associated outbreaks confirmed or suspected to be caused by cyanobacterial toxins has decreased, from 11 (2009–2010) to one (2011–2012) (6). This decrease is likely the result of a decrease in outbreak reporting rather than a true decrease in incidence. CDC is currently developing a mechanism for reporting algal bloom–associated individual cases through NORS to better characterize their epidemiology. The findings in this report are subject to at least two limitations. First, the outbreak counts presented are likely an underestimate of actual incidence. Many factors can present barriers to the detection, investigation, and reporting of outbreaks: 1) mild illness; 2) small outbreak size; 3) long incubation periods; 4) wide geographic dispersion of ill swimmers; 5) transient nature of contamination; 6) setting or venue of outbreak exposure (e.g., residential backyard pool); and 7) potential lack of communication between those who respond to outbreaks of chemical etiology (e.g., hazardous materials personnel) and those who usually report outbreaks (e.g., infectious disease epidemiologists). Second, because of variation in public health capacity and reporting requirements across jurisdictions, those reporting outbreaks most frequently might not be those in which outbreaks most frequently occur. Increasingly, molecular typing tools are being employed to understand the epidemiology of waterborne disease and outbreaks. Most species and genotypes of Cryptosporidium are morphologically indistinguishable from one another, and only molecular methods can distinguish species and subtypes and thereby elucidate transmission pathways (7,8). Systematic national genotyping and subtyping of Cryptosporidium in clinical specimens and environmental samples through CryptoNet (http://www.cdc.gov/parasites/crypto/cryptonet.html) can identify circulating Cryptosporidium species and subtypes and help identify epidemiologic linkages between reported cases. Molecular typing could substantially help elucidate cryptosporidiosis epidemiology in the United States and inform development of future guidance to prevent recreational water–associated and other outbreaks of cryptosporidiosis (9,10).

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term Cryptosporidium typing reveals the aetiology and species-specific epidemiology of human cryptosporidiosis in England and Wales, 2000 to 2003.

          To improve understanding of the aetiology and epidemiology of human cryptosporidiosis, over 8,000 Cryptosporidium isolates were submitted for typing to the species level over a four year period. The majority were either Cryptosporidium parvum (45.9%) or Cryptosporidium hominis (49.2%). Dual infection occurred in 40 (0.5%) cases and six other known Cryptosporidium species or genotypes were found in 67 (0.9%) cases. These were Cryptosporidium meleagridis, Cryptosporidium felis, Cryptosporidium canis, and the Cryptosporidium cervine, horse and skunk genotypes. The remaining 3.5% were not typable. Epidemiology differed between infecting species. C. parvum cases were younger, although C. hominis was more prevalent in infants under one year and in females aged 15 to 44 years. Spring peaks in cases reported to national surveillance were due to C. parvum, while C. hominis was more prevalent during the late summer and early autumn as well as in patients reporting recent foreign travel. Temporal and geographical differences were observed and a decline in C. parvum cases persisted from 2001. Typing of isolates allowed outbreaks to be more clearly delineated, and demonstrated anthroponotic spread of C. parvum as well as C. hominis. Our findings suggest that national surveillance for Cryptosporidium should be conducted at the species level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cryptosporidiosis Associated with Ozonated Apple Cider

            We linked an outbreak of cryptosporidiosis to ozonated apple cider by using molecular and epidemiologic methods. Because ozonation was insufficient in preventing this outbreak, its use in rendering apple cider safe for drinking is questioned.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Swimming-associated cryptosporidiosis.

              In July and August 1988, an outbreak of gastroenteritis affected 44 of 60 (73%) persons from 5 separate swimming groups who had used the same swimming pool in Los Angeles. Cryptosporidium was identified in 5 of 8 (63%) stool specimens, and the clinical picture was consistent with Cryptosporidium infection. Resistance of Cryptosporidium to chlorine, an inadequately maintained pool filtration system, repeated exposure to pool water, and possible continuing pool contamination may have contributed to ongoing transmission. Cryptosporidium should be considered a potential etiologic agent of gastroenteritis associated with recreational water use.
                Bookmark

                Author and article information

                Journal
                MMWR Morb Mortal Wkly Rep
                MMWR Morb. Mortal. Wkly. Rep
                MMWR
                MMWR. Morbidity and Mortality Weekly Report
                U.S. Centers for Disease Control
                0149-2195
                1545-861X
                26 June 2015
                26 June 2015
                : 64
                : 24
                : 668-672
                Affiliations
                [1 ]Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC
                [2 ]Environmental Protection Agency
                [3 ]Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
                Author notes
                Corresponding author: Michele C. Hlavsa, mhlavsa@ 123456cdc.gov , 404-718-4695.
                Article
                668-672
                4584744
                26110837
                f1668dca-4650-42cc-b863-f5c30f7e492e
                Copyright @ 2015

                All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

                History
                Categories
                Articles

                Comments

                Comment on this article