8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phylogeographic evidence for evolutionary refugia in the Gulf sandstone ranges of northern Australia

      , , , ,
      Australian Journal of Zoology
      CSIRO Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Locating and protecting climate change refugia is important to conserving biodiversity with accelerating climate change. Comparative phylogeographic analysis provides an effective tool for locating such refugia, as long-term retention of one or more populations within a refugial landscape will generate unique genetic lineages. The ranges of the western Gulf region of northern Australia are thought to represent a significant arid-zone refugium, in which case low-dispersal organisms should have strong phylogeographic structure across the region. To test for this, we conducted extensive sampling of three species of Gehyra geckos and analysed diversity for mitochondrial DNA and eight nuclear loci. These analyses revealed congruent and high phylogeographic diversity, especially, but not exclusively, in rock-restricted species. This finding, and other recent phylogeographic evidence, demonstrates that these topographically variable landforms have enabled persistence of ecologically diverse vertebrate species through the climate changes of the late Pleistocene. Identification of this relatively under-protected region as a significant climate change refugium points to the need to expand protected areas in this region and to invest in ecological management across existing National Parks and Indigenous Protected Areas.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae).

          Polymerase chain reaction (PCR) products corresponding to 803 bp of the cytochrome oxidase subunits I and II region of mitochondrial DNA (mtDNA COI-II) were deduced to consist of multiple haplotypes in three Sitobion species. We investigated the molecular basis of these observations. PCR products were cloned, and six clones from one individual per species were sequenced. In each individual, one sequence was found commonly, but also two or three divergent sequences were seen. The divergent sequences were shown to be nonmitochondrial by sequencing from purified mtDNA and Southern blotting experiments. All seven nonmitochondrial clones sequenced to completion were unique. Nonmitochondrial sequences have a high proportion of unique sites, and very few characters are shared between nonmitochondrial clones to the exclusion of mtDNA. From these data, we infer that fragments of mtDNA have been transposed separately (probably into aphid chromosomes), at a frequency only known to be equalled in humans. The transposition phenomenon appears to occur infrequently or not at all in closely related genera and other aphids investigated. Patterns of nucleotide substitution in mtDNA inferred over a parsimony tree are very different from those in transposed sequences. Compared with mtDNA, nonmitochondrial sequences have less codon position bias, more even exchanges between A, G, C and T, and a higher proportion of nonsynonymous replacements. Although these data are consistent with the transposed sequences being under less constraint than mtDNA, changes in the nonmitochondrial sequences are not random: there remains significant position bias, and probable excesses of synonymous replacements and of conservative inferred amino acid replacements. We conclude that a proportion of the inferred change in the nonmitochondrial sequences occurred before transposition. We believe that Sitobion aphids (and other species exhibiting mtDNA transposition) may be important for studying the molecular evolution of mtDNA and pseudogenes. However, our data highlight the need to establish the true evolutionary relationships between sequences in comparative investigations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments.

            J-F Flot (2009)
            The program phase is widely used for Bayesian inference of haplotypes from diploid genotypes; however, manually creating phase input files from sequence alignments is an error-prone and time-consuming process, especially when dealing with numerous variable sites and/or individuals. Here, a web tool called seqphase is presented that generates phase input files from fasta sequence alignments and converts phase output files back into fasta. During the production of the phase input file, several consistency checks are performed on the dataset and suitable command line options to be used for the actual phase data analysis are suggested. seqphase was written in perl and is freely accessible over the Internet at the address http://www.mnhn.fr/jfflot/seqphase. © 2009 Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography

                Bookmark

                Author and article information

                Journal
                Australian Journal of Zoology
                Aust. J. Zool.
                CSIRO Publishing
                0004-959X
                2017
                2017
                : 65
                : 6
                : 408
                Article
                10.1071/ZO17079
                f16e51bd-d50a-4aa6-9a48-cc811874dea0
                © 2017
                History

                Comments

                Comment on this article