24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biodiversity on the Earth is changing at an unprecedented rate due to a variety of global change factors (GCFs). However, the effects of GCFs on microbial diversity is unclear despite that soil microorganisms play a critical role in biogeochemical cycling. Here, we synthesize 1235 GCF observations worldwide and show that microbial rare species are more sensitive to GCFs than common species, while GCFs do not always lead to a reduction in microbial diversity. GCFs-induced shifts in microbial alpha diversity can be predominately explained by the changed soil pH. In addition, GCF impacts on soil functionality are explained by microbial community structure and biomass rather than the alpha diversity. Altogether, our findings of GCF impacts on microbial diversity are fundamentally different from previous knowledge for well-studied plant and animal communities, and are crucial to policy-making for the conservation of microbial diversity hotspots under global changes.

          Abstract

          It is often assumed that various types of anthropogenic change reduce microbial diversity and function. Here, the authors do a meta-analysis showing that global change factors affect microbial diversity inconsistently; negative effects are most likely for global change factors that affect soil pH.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The diversity and biogeography of soil bacterial communities.

          For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH (r(2) = 0.70 and r(2) = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of "macro" organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global biodiversity scenarios for the year 2100.

            Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soil biodiversity and soil community composition determine ecosystem multifunctionality.

              Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth's biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.
                Bookmark

                Author and article information

                Contributors
                wangck-cf@nefu.edu.cn
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                17 June 2020
                17 June 2020
                2020
                : 11
                : 3072
                Affiliations
                [1 ]ISNI 0000 0004 1789 9091, GRID grid.412246.7, Center for Ecological Research, , Northeast Forestry University, ; Harbin, 150040 China
                [2 ]ISNI 0000 0004 1789 9091, GRID grid.412246.7, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, , Northeast Forestry University, ; Harbin, 150040 China
                [3 ]ISNI 0000 0004 1936 8040, GRID grid.261120.6, Center for Ecosystem Science and Society, , Northern Arizona University, ; Flagstaff, AZ 86011 USA
                Author information
                http://orcid.org/0000-0003-2226-4261
                http://orcid.org/0000-0003-3513-5426
                Article
                16881
                10.1038/s41467-020-16881-7
                7300008
                32555185
                f1707a86-e544-4d59-81d8-99cfc0ed7c6a
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 December 2019
                : 29 May 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                climate-change ecology,ecosystem ecology,biodiversity,microbial ecology
                Uncategorized
                climate-change ecology, ecosystem ecology, biodiversity, microbial ecology

                Comments

                Comment on this article