6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antifibrotic effects of 2-carba cyclic phosphatidic acid (2ccPA) in systemic sclerosis: contribution to the novel treatment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cyclic phosphatidic acid (cPA) has an inhibitory effect on the autotaxin (ATX)/lysophosphatidic acid (LPA) axis, which has been implicated to play an important role in the progression of fibrosis in systemic sclerosis (SSc). The purpose of this study is to assess the antifibrotic activity of cPA for the treatment of SSc using SSc skin fibroblasts and an animal model of bleomycin-induced skin fibrosis.

          Methods

          We used a chemically stable derivative of cPA (2ccPA). First, we investigated the effect of 2ccPA on extracellular matrix (ECM) expression in skin fibroblasts. Next, the effect of 2ccPA on the intracellular cAMP levels was determined to investigate the mechanisms of the antifibrotic activity of 2ccPA. Finally, we administered 2ccPA to bleomycin-induced SSc model mice to evaluate whether 2ccPA prevented the progression of skin fibrosis.

          Results

          2ccPA decreased ECM expression in SSc skin fibroblasts and TGF-β1-treated healthy skin fibroblasts without LPA stimulation. 2ccPA increased the intracellular cAMP levels in skin fibroblasts, suggesting that the antifibrotic effect of 2ccPA was the consequence of the increase in the intracellular cAMP levels. Administration of 2ccPA also ameliorated the progression of bleomycin-induced skin fibrosis in mice.

          Conclusions

          Our data indicated that 2ccPA had inhibitory effects on the progression of skin fibrosis by abrogating ECM production from activated skin fibroblasts. These cells were repressed, at least in part, by increased intracellular cAMP levels. 2ccPA may be able to be used to treat fibrotic lesions in SSc.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism.

          The lysophospholipids, sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC), activate diverse groups of G-protein-coupled receptors that are widely expressed and regulate decisive cellular functions. Receptors of the endothelial differentiation gene family are activated by S1P (S1P(1-5)) or LPA (LPA(1-3)); two more distantly related receptors are activated by LPA (LPA(4/5)); the GPR(3/6/12) receptors have a high constitutive activity but are further activated by S1P and/or SPC; and receptors of the OGR1 cluster (OGR1, GPR4, G2A, TDAG8) appear to be activated by SPC, LPC, psychosine and/or protons. G-protein-coupled lysophospholipid receptors regulate cellular Ca(2+) homoeostasis and the cytoskeleton, proliferation and survival, migration and adhesion. They have been implicated in development, regulation of the cardiovascular, immune and nervous systems, inflammation, arteriosclerosis and cancer. The availability of S1P and LPA at their G-protein-coupled receptors is regulated by enzymes that generate or metabolize these lysophospholipids, and localization plays an important role in this process. Besides FTY720, which is phosphorylated by sphingosine kinase-2 and then acts on four of the five S1P receptors of the endothelial differentiation gene family, other compounds have been identified that interact with more ore less selectivity with lysophospholipid receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lysophospholipid receptors in drug discovery.

            Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1-6, S1P1-5, LPI1, and LysoPS1-3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, pain, cancer, inflammation, metabolic syndrome, bone formation, fertility, organismal development, and other effects on most organ systems. Advances in the LP receptor field have enabled the development of novel small molecules targeting LP receptors for several diseases. Most notably, fingolimod (FTY720, Gilenya, Novartis), an S1P receptor modulator, became the first FDA-approved medicine as an orally bioavailable drug for treating relapsing forms of multiple sclerosis. This success is currently being followed by multiple, mechanistically related compounds targeting S1P receptor subtypes, which are in various stages of clinical development. In addition, an LPA1 antagonist, BMS-986020 (Bristol-Myers Squibb), is in Phase 2 clinical development for treating idiopathic pulmonary fibrosis, as a distinct compound, SAR100842 (Sanofi) for the treatment of systemic sclerosis and related fibrotic diseases. This review summarizes the current state of drug discovery in the LP receptor field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclic AMP-mediated immune regulation--overview of mechanisms of action in T cells.

              The canonical second messenger cAMP is well established as a potent negative regulator of T cell immune function. Through protein kinase A (PKA) it regulates T cell function at the level of transcription factors, members of the mitogen-activated protein kinase pathway, phospholipases (PLs), Ras homolog (Rho)A and proteins involved in the control of cell cycle progression. Type I PKA is the predominant PKA isoform in T cells. Furthermore, whereas type II PKA is located at the centrosome, type I PKA is anchored close to the T cell receptor (TCR) in lipid rafts by the Ezrin-ERM-binding phosphoprotein of 50 kDa (EBP50)-phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG) scaffold complex. The most TCR-proximal target for type I PKA is C-terminal Src kinase (Csk), which upon activation by raft recruitment and phosphorylation inhibits the Src family tyrosine kinases Lck and Fyn and thus functions to maintain T cell homeostasis. Recently, induction of cAMP levels in responder T cells has emerged as one of the mechanisms by which regulatory T (T(R)) cells execute their suppressive action. Thus, the cAMP-type I PKA-Csk pathway emerges as a putative target for therapeutic intervention in autoimmune disorders as well as in cancer, where T(R) cell-mediated suppression contributes to suboptimal local immune responses. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                higuchi.tomoaki@twmu.ac.jp
                kae-t@twmu.ac.jp
                tochimoto.akiko@twmu.ac.jp
                k.himura.knzw@gmail.com
                ior-lab.yk.be@twmu.ac.jp
                katsumata@twmu.ac.jp
                masuda.ikuko@twmu.ac.jp
                yamanaka@twmu.ac.jp
                tmorohoshi@c-pa.jp
                y-kawa@twmu.ac.jp
                Journal
                Arthritis Res Ther
                Arthritis Res. Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                18 April 2019
                18 April 2019
                2019
                : 21
                : 103
                Affiliations
                [1 ]ISNI 0000 0001 0720 6587, GRID grid.410818.4, Department of Rheumatology, , Tokyo Women’s Medical University School of Medicine, ; 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
                [2 ]SANSHO, Co., Ltd., Tokyo, Japan
                Article
                1881
                10.1186/s13075-019-1881-3
                6472078
                30999934
                f171752b-2623-4893-9694-1ec17d50cd0a
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 October 2018
                : 26 March 2019
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Orthopedics
                fibrosis,fibroblasts,systemic sclerosis,cyclic phosphatidic acid,treatment
                Orthopedics
                fibrosis, fibroblasts, systemic sclerosis, cyclic phosphatidic acid, treatment

                Comments

                Comment on this article