12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulated Cell Death Seen through the Lens of Islet Transplantation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinical islet transplantation effectively restores euglycemia and corrects glycosylated hemoglobin in labile type 1 diabetes mellitus (T1DM). Despite marked improvements in islet transplantation outcomes, acute islet cell death remains a substantial obstacle that compromises long-term engraftment outcomes. Multiple organ donors are routinely required to achieve insulin independence. Therapeutic agents that ameliorate cell death and/or control injury-related inflammatory cascades offer potential to improve islet transplant success. Apoptotic cell death has been identified as a major contributor to cellular demise and therapeutic strategies that subvert initiation and consequences of apoptotic cell death have shown promise in pre-clinical models. Indeed, in numerous pathologies and diseases apoptosis has been the most extensively described form of regulated cell death. However, recent identification of novel, alternative regulated cell death pathways in other disease states and solid organ transplantation suggest that these additional pathways may also have substantial relevance in islet transplantation. These regulated, non-apoptotic cell death pathways exhibit distinct biochemical characteristics but have yet to be fully characterized within islet transplantation. We review herein the various regulated cell death pathways and highlight their relative potential contributions to islet viability, engraftment failure and islet dysfunction.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells.

          We used synthetic lethal high-throughput screening to interrogate 23,550 compounds for their ability to kill engineered tumorigenic cells but not their isogenic normal cell counterparts. We identified known and novel compounds with genotype-selective activity, including doxorubicin, daunorubicin, mitoxantrone, camptothecin, sangivamycin, echinomycin, bouvardin, NSC146109, and a novel compound that we named erastin. These compounds have increased activity in the presence of hTERT, the SV40 large and small T oncoproteins, the human papillomavirus type 16 (HPV) E6 and E7 oncoproteins, and oncogenic HRAS. We found that overexpressing hTERT and either E7 or LT increased expression of topoisomerase 2alpha and that overexpressing RAS(V12) and ST both increased expression of topoisomerase 1 and sensitized cells to a nonapoptotic cell death process initiated by erastin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synchronized renal tubular cell death involves ferroptosis.

            Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models

              Ferrostatin-1 (Fer-1) inhibits ferroptosis, a form of regulated, oxidative, nonapoptotic cell death. We found that Fer-1 inhibited cell death in cellular models of Huntington’s disease (HD), periventricular leukomalacia (PVL), and kidney dysfunction; Fer-1 inhibited lipid peroxidation, but not mitochondrial reactive oxygen species formation or lysosomal membrane permeability. We developed a mechanistic model to explain the activity of Fer-1, which guided the development of ferrostatins with improved properties. These studies suggest numerous therapeutic uses for ferrostatins, and that lipid peroxidation mediates diverse disease phenotypes.
                Bookmark

                Author and article information

                Journal
                Cell Transplant
                Cell Transplant
                CLL
                spcll
                Cell Transplantation
                SAGE Publications (Sage CA: Los Angeles, CA )
                0963-6897
                1555-3892
                30 May 2018
                June 2018
                : 27
                : 6
                : 890-901
                Affiliations
                [1 ]Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
                [2 ]Department of Surgery, University of Alberta, Edmonton, AB, Canada
                [3 ]Division of Nephrology, Medical Clinic 3, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
                Author notes
                [*]A. M. James Shapiro, Canada Research Chair in Transplantation Surgery and Regenerative Medicine, Clinical Islet Transplant Program, University of Alberta. 2000 College Plaza, 8215-112th St, Edmonton T6G 2C8, AB, Canada. Email: amjs@ 123456islet.ca
                Article
                10.1177_0963689718766323
                10.1177/0963689718766323
                6050903
                29845882
                f17ea811-e434-4eb8-bc41-b6dc4c2a44ce
                © The Author(s) 2018

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 21 November 2017
                : 22 February 2018
                : 26 February 2018
                Funding
                Funded by: German Research Foundation, FundRef https://doi.org/10.13039/501100000023;
                Award ID: Heisenberg-Professorship
                Categories
                Reviews

                islets,regulated cell death,apoptosis,ferroptosis,necroptosis,danger-associated molecular patterns

                Comments

                Comment on this article