64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Roles of Post-translational Modifications in the Context of Protein Interaction Networks

      research-article
      , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among other effects, post-translational modifications (PTMs) have been shown to exert their function via the modulation of protein-protein interactions. For twelve different main PTM-types and associated subtypes and across 9 diverse species, we investigated whether particular PTM-types are associated with proteins with specific and possibly “strategic” placements in the network of all protein interactions by determining informative network-theoretic properties. Proteins undergoing a PTM were observed to engage in more interactions and positioned in more central locations than non-PTM proteins. Among the twelve considered PTM-types, phosphorylated proteins were identified most consistently as being situated in central network locations and with the broadest interaction spectrum to proteins carrying other PTM-types, while glycosylated proteins are preferentially located at the network periphery. For the human interactome, proteins undergoing sumoylation or proteolytic cleavage were found with the most characteristic network properties. PTM-type-specific protein interaction network (PIN) properties can be rationalized with regard to the function of the respective PTM-carrying proteins. For example, glycosylation sites were found enriched in proteins with plasma membrane localizations and transporter or receptor activity, which generally have fewer interacting partners. The involvement in disease processes of human proteins undergoing PTMs was also found associated with characteristic PIN properties. By integrating global protein interaction networks and specific PTMs, our study offers a novel approach to unraveling the role of PTMs in cellular processes.

          Author Summary

          The function of proteins is frequently modulated by chemical modifications introduced after translation from RNA. These post-translational modifications (PTMs) have been shown to also influence the interaction between proteins carrying them. We tested whether specific PTM-types characterized by attaching different chemical groups are associated with proteins with characteristic and possibly strategic positions within the network of all protein interactions in cellular systems. Based on network-theoretic analyses of PTMs in the context of protein interaction networks of nine selected species, we indeed observed distinctive properties of twelve PTM-types tested. Phosphorylation was found associated with proteins in central locations with the broadest interaction scope, while glycosylation was more prominent in proteins at the periphery of the web of all protein interactions. The involvement in disease processes of human proteins undergoing PTMs was also found associated with characteristic protein interaction network properties. Our study highlights common and specific roles of the various PTM types in the orchestration of molecular interactions in cells.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Activities at the Universal Protein Resource (UniProt)

          The mission of the Universal Protein Resource (UniProt) (http://www.uniprot.org) is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequences and functional annotation. It integrates, interprets and standardizes data from literature and numerous resources to achieve the most comprehensive catalog possible of protein information. The central activities are the biocuration of the UniProt Knowledgebase and the dissemination of these data through our Web site and web services. UniProt is produced by the UniProt Consortium, which consists of groups from the European Bioinformatics Institute (EBI), the SIB Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). UniProt is updated and distributed every 4 weeks and can be accessed online for searches or downloads.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse

            PhosphoSitePlus (http://www.phosphosite.org) is an open, comprehensive, manually curated and interactive resource for studying experimentally observed post-translational modifications, primarily of human and mouse proteins. It encompasses 1 30 000 non-redundant modification sites, primarily phosphorylation, ubiquitinylation and acetylation. The interface is designed for clarity and ease of navigation. From the home page, users can launch simple or complex searches and browse high-throughput data sets by disease, tissue or cell line. Searches can be restricted by specific treatments, protein types, domains, cellular components, disease, cell types, cell lines, tissue and sequences or motifs. A few clicks of the mouse will take users to substrate pages or protein pages with sites, sequences, domain diagrams and molecular visualization of side-chains known to be modified; to site pages with information about how the modified site relates to the functions of specific proteins and cellular processes and to curated information pages summarizing the details from one record. PyMOL and Chimera scripts that colorize reactive groups on residues that are modified can be downloaded. Features designed to facilitate proteomic analyses include downloads of modification sites, kinase–substrate data sets, sequence logo generators, a Cytoscape plugin and BioPAX download to enable pathway visualization of the kinase–substrate interactions in PhosphoSitePlus®.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Universal Protein Resource (UniProt) in 2010

              The primary mission of UniProt is to support biological research by maintaining a stable, comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and querying interfaces freely accessible to the scientific community. UniProt is produced by the UniProt Consortium which consists of groups from the European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). UniProt is comprised of four major components, each optimized for different uses: the UniProt Archive, the UniProt Knowledgebase, the UniProt Reference Clusters and the UniProt Metagenomic and Environmental Sequence Database. UniProt is updated and distributed every 3 weeks and can be accessed online for searches or download at http://www.uniprot.org.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                February 2015
                18 February 2015
                : 11
                : 2
                : e1004049
                Affiliations
                [001]Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
                Indiana University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GD DW. Performed the experiments: GD. Analyzed the data: GD DW. Wrote the paper: GD DW.

                [¤]

                Current address: European Molecular Biology Institute (EMBL), Heidelberg, Germany

                Article
                PCOMPBIOL-D-14-00312
                10.1371/journal.pcbi.1004049
                4333291
                25692714
                f1938a61-90b9-46e9-9b97-d6b67c36f8b3
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 18 February 2014
                : 19 November 2014
                Page count
                Figures: 6, Tables: 4, Pages: 23
                Funding
                The authors received no specific funding for this article.
                Categories
                Research Article

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article