Blog
About

14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The grand challenges of Science Robotics

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the ambitions of Science Robotics is to deeply root robotics research in science while developing novel robotic platforms that will enable new scientific discoveries. Of our 10 grand challenges, the first 7 represent underpinning technologies that have a wider impact on all application areas of robotics. For the next two challenges, we have included social robotics and medical robotics as application-specific areas of development to highlight the substantial societal and health impacts that they will bring. Finally, the last challenge is related to responsible innovation and how ethics and security should be carefully considered as we develop the technology further.

          Related collections

          Most cited references 88

          • Record: found
          • Abstract: not found
          • Article: not found

          Coordination of groups of mobile autonomous agents using nearest neighbor rules

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mastering the game of Go without human knowledge

            A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Design, fabrication and control of soft robots.

              Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.
                Bookmark

                Author and article information

                Journal
                Science Robotics
                Sci. Robot.
                American Association for the Advancement of Science (AAAS)
                2470-9476
                January 31 2018
                January 31 2018
                : 3
                : 14
                : eaar7650
                10.1126/scirobotics.aar7650
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                Comments

                Comment on this article