31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stable creeping fault segments can become destructive as a result of dynamic weakening.

      Nature
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Faults in Earth's crust accommodate slow relative motion between tectonic plates through either similarly slow slip or fast, seismic-wave-producing rupture events perceived as earthquakes. These types of behaviour are often assumed to be separated in space and to occur on two different types of fault segment: one with stable, rate-strengthening friction and the other with rate-weakening friction that leads to stick-slip. The 2011 Tohoku-Oki earthquake with moment magnitude M(w) = 9.0 challenged such assumptions by accumulating its largest seismic slip in the area that had been assumed to be creeping. Here we propose a model in which stable, rate-strengthening behaviour at low slip rates is combined with coseismic weakening due to rapid shear heating of pore fluids, allowing unstable slip to occur in segments that can creep between events. The model parameters are based on laboratory measurements on samples from the fault of the M(w) 7.6 1999 Chi-Chi earthquake. The long-term slip behaviour of the model, which we examine using a unique numerical approach that includes all wave effects, reproduces and explains a number of both long-term and coseismic observations-some of them seemingly contradictory-about the faults at which the Tohoku-Oki and Chi-Chi earthquakes occurred, including there being more high-frequency radiation from areas of lower slip, the largest seismic slip in the Tohoku-Oki earthquake having occurred in a potentially creeping segment, the overall pattern of previous events in the area and the complexity of the Tohoku-Oki rupture. The implication that earthquake rupture may break through large portions of creeping segments, which are at present considered to be barriers, requires a re-evaluation of seismic hazard in many areas.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Heating and weakening of faults during earthquake slip

          James Rice (2006)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries.

            Geophysical observations from the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki, Japan earthquake allow exploration of a rare large event along a subduction megathrust. Models for this event indicate that the distribution of coseismic fault slip exceeded 50 meters in places. Sources of high-frequency seismic waves delineate the edges of the deepest portions of coseismic slip and do not simply correlate with the locations of peak slip. Relative to the M(w) 8.8 2010 Maule, Chile earthquake, the Tohoku-Oki earthquake was deficient in high-frequency seismic radiation--a difference that we attribute to its relatively shallow depth. Estimates of total fault slip and surface secular strain accumulation on millennial time scales suggest the need to consider the potential for a future large earthquake just south of this event.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake.

              Strong spatial variation of rupture characteristics in the moment magnitude (M(w)) 9.0 Tohoku-Oki megathrust earthquake controlled both the strength of shaking and the size of the tsunami that followed. Finite-source imaging reveals that the rupture consisted of a small initial phase, deep rupture for up to 40 seconds, extensive shallow rupture at 60 to 70 seconds, and continuing deep rupture lasting more than 100 seconds. A combination of a shallow dipping fault and a compliant hanging wall may have enabled large shallow slip near the trench. Normal faulting aftershocks in the area of high slip suggest dynamic overshoot on the fault. Despite prodigious total slip, shallower parts of the rupture weakly radiated at high frequencies, whereas deeper parts of the rupture radiated strongly at high frequencies.
                Bookmark

                Author and article information

                Journal
                23302798
                10.1038/nature11703

                Comments

                Comment on this article