12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mitotic Regulation of the APC Activator Proteins CDC20 and CDH1

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ordered activation of the ubiquitin protein ligase anaphase-promoting complex (APC) or cyclosome by CDC20 in metaphase and by CDH1 in telophase is essential for anaphase and for exit from mitosis, respectively. Here, we show that CDC20 can only bind to and activate the mitotically phosphorylated form of theXenopus and the human APC in vitro. In contrast, the analysis of phosphorylated and nonphosphorylated forms of CDC20 suggests that CDC20 phosphorylation is neither sufficient nor required for APC activation. On the basis of these results and the observation that APC phosphorylation correlates with APC activation in vivo, we propose that mitotic APC phosphorylation is an important mechanism that controls the proper timing of APC CDC20 activation. We further show that CDH1 is phosphorylated in vivo during S, G2, and M phase and that CDH1 levels fluctuate during the cell cycle. In vitro, phosphorylated CDH1 neither binds to nor activates the APC as efficiently as does nonphosphorylated CDH1. Nonphosphorylatable CDH1 mutants constitutively activate APC in vitro and in vivo, whereas mutants mimicking the phosphorylated form of CDH1 are constitutively inactive. These results suggest that mitotic kinases have antagonistic roles in regulating APC CDC20 and APC CDH1; the phosphorylation of APC subunits is required to allow APC activation by CDC20, whereas the phosphorylation of CDH1 prevents activation of the APC by CDH1. These mechanisms can explain the temporal order of APC activation by CDC20 and CDH1 and may help to ensure that exit from mitosis is not initiated before anaphase has occurred.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation.

          Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinases (CDKs) by an unknown mechanism. We show that the Cdc14 phosphatase triggers mitotic exit by three parallel mechanisms, each of which inhibits Cdk activity. Cdc14 dephosphorylates Sic1, a Cdk inhibitor, and Swi5, a transcription factor for SIC1, and induces degradation of mitotic cyclins, likely by dephosphorylating the activator of mitotic cyclin degradation, Cdh1/Hct1. Feedback between these pathways may lead to precipitous collapse of mitotic CDK activity and help coordinate exit from mitosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B.

            Cyclin B is degraded at the onset of anaphase by a ubiquitin-dependent proteolytic system. We have fractionated mitotic Xenopus egg extracts to identify components required for this process. We find that UBC4 and at least one other ubiquitin-conjugating enzyme can support cyclin B ubiquitination. The mitotic specificity of cyclin ubiquitination is determined by a 20S complex that contains homologs of budding yeast CDC16 and CDC27. Because these proteins are required for anaphase in yeast and mammalian cells, we refer to this complex as the anaphase-promoting complex (APC). CDC27 antibodies deplete APC activity, while immunopurified CDC27 complexes are sufficient to complement either interphase extracts or a mixture of recombinant UBC4 and the ubiquitin-activating enzyme E1. These results suggest that APC functions as a regulated ubiquitin-protein ligase that targets cyclin B for destruction in mitosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex.

              Proteolysis of mitotic cyclins depends on a multisubunit ubiquitin-protein ligase, the anaphase promoting complex (APC). Proteolysis commences during anaphase, persisting throughout G1 until it is terminated by cyclin-dependent kinases (CDKs) as cells enter S phase. Proteolysis of mitotic cyclins in yeast was shown to require association of the APC with the substrate-specific activator Hct1 (also called Cdh1). Phosphorylation of Hct1 by CDKs blocked the Hct1-APC interaction. The mutual inhibition between APC and CDKs explains how cells suppress mitotic CDK activity during G1 and then establish a period with elevated kinase activity from S phase until anaphase.
                Bookmark

                Author and article information

                Journal
                Molecular Biology of the Cell
                MBoC
                American Society for Cell Biology (ASCB)
                1059-1524
                1939-4586
                May 2000
                May 2000
                : 11
                : 5
                : 1555-1569
                Affiliations
                [1 ]Research Institute of Molecular Pathology, A-1030 Vienna, Austria; and
                [2 ]Protein Interaction Laboratory, Odense University, DK-5230 Odense M, Denmark
                Article
                10.1091/mbc.11.5.1555
                14867
                10793135
                f19a72b3-eaef-4700-918e-f884eca2f4c3
                © 2000
                History

                Comments

                Comment on this article