9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Football Players Do Not Show “Neural Efficiency” in Cortical Activity Related to Visuospatial Information Processing During Football Scenes: An EEG Mapping Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study tested the hypothesis of cortical neural efficiency (i.e., reduced brain activation in experts) in the visuospatial information processing related to football (soccer) scenes in football players. Electroencephalographic data were recorded from 56 scalp electrodes in 13 football players and eight matched non-players during the observation of 70 videos with football actions lasting 2.5 s each. During these videos, the central fixation target changed color from red to blue or vice versa. The videos were watched two times. One time, the subjects were asked to estimate the distance between players during each action (FOOTBALL condition, visuospatial). Another time, they had to estimate if the fixation target was colored for a longer time in red or blue color (CONTROL condition, non-visuospatial). The order of the two conditions was pseudo-randomized across the subjects. Cortical activity was estimated as the percent reduction in power of scalp alpha rhythms (about 8–12 Hz) during the videos compared with a pre-video baseline (event-related desynchronization, ERD). In the FOOTBALL condition, a prominent and bilateral parietal alpha ERD (i.e., cortical activation) was greater in the football players than non-players ( p < 0.05) in contrast with the neural efficiency hypothesis. In the CONTROL condition, no significant alpha ERD difference was observed. No difference in behavioral response time and accuracy was found between the two groups in any condition. In conclusion, a prominent parietal cortical activity related to visuospatial processes during football scenes was greater in the football players over controls in contrast with the neural efficiency hypothesis.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis.

          Evidence is presented that EEG oscillations in the alpha and theta band reflect cognitive and memory performance in particular. Good performance is related to two types of EEG phenomena (i) a tonic increase in alpha but a decrease in theta power, and (ii) a large phasic (event-related) decrease in alpha but increase in theta, depending on the type of memory demands. Because alpha frequency shows large interindividual differences which are related to age and memory performance, this double dissociation between alpha vs. theta and tonic vs. phasic changes can be observed only if fixed frequency bands are abandoned. It is suggested to adjust the frequency windows of alpha and theta for each subject by using individual alpha frequency as an anchor point. Based on this procedure, a consistent interpretation of a variety of findings is made possible. As an example, in a similar way as brain volume does, upper alpha power increases (but theta power decreases) from early childhood to adulthood, whereas the opposite holds true for the late part of the lifespan. Alpha power is lowered and theta power enhanced in subjects with a variety of different neurological disorders. Furthermore, after sustained wakefulness and during the transition from waking to sleeping when the ability to respond to external stimuli ceases, upper alpha power decreases, whereas theta increases. Event-related changes indicate that the extent of upper alpha desynchronization is positively correlated with (semantic) long-term memory performance, whereas theta synchronization is positively correlated with the ability to encode new information. The reviewed findings are interpreted on the basis of brain oscillations. It is suggested that the encoding of new information is reflected by theta oscillations in hippocampo-cortical feedback loops, whereas search and retrieval processes in (semantic) long-term memory are reflected by upper alpha oscillations in thalamo-cortical feedback loops. Copyright 1999 Elsevier Science B.V.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alpha-band oscillations, attention, and controlled access to stored information

            Alpha-band oscillations are the dominant oscillations in the human brain and recent evidence suggests that they have an inhibitory function. Nonetheless, there is little doubt that alpha-band oscillations also play an active role in information processing. In this article, I suggest that alpha-band oscillations have two roles (inhibition and timing) that are closely linked to two fundamental functions of attention (suppression and selection), which enable controlled knowledge access and semantic orientation (the ability to be consciously oriented in time, space, and context). As such, alpha-band oscillations reflect one of the most basic cognitive processes and can also be shown to play a key role in the coalescence of brain activity in different frequencies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural mechanisms of general fluid intelligence.

              We used an individual-differences approach to test whether general fluid intelligence (gF) is mediated by brain regions that support attentional (executive) control, including subregions of the prefrontal cortex. Forty-eight participants first completed a standard measure of gF (Raven's Advanced Progressive Matrices). They then performed verbal and nonverbal versions of a challenging working-memory task (three-back) while their brain activity was measured using functional magnetic resonance imaging (fMRI). Trials within the three-back task varied greatly in the demand for attentional control because of differences in trial-to-trial interference. On high-interference trials specifically, participants with higher gF were more accurate and had greater event-related neural activity in several brain regions. Multiple regression analyses indicated that lateral prefrontal and parietal regions may mediate the relation between ability (gF) and performance (accuracy despite interference), providing constraints on the neural mechanisms that support gF.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                26 April 2019
                2019
                : 10
                : 890
                Affiliations
                [1] 1Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome , Rome, Italy
                [2] 2IRCCS SDN , Naples, Italy
                [3] 3Department of Motor Sciences and Healthiness, University of Naples Parthenope , Naples, Italy
                [4] 4Oasi Research Institute – IRCCS , Troina, Italy
                [5] 5Department of Clinical and Experimental Medicine, University of Foggia , Foggia, Italy
                [6] 6IRCCS San Raffaele Pisana , Rome, Italy
                [7] 7Hospital San Raffaele Cassino , Cassino, Italy
                Author notes

                Edited by: Antonio Hernández-Mendo, University of Málaga, Spain

                Reviewed by: Ana-Maria Cebolla, Free University of Brussels, Belgium; Mario Tombini, Campus Bio-Medico University, Italy

                *Correspondence: Roberta Lizio, roberta.lizio@ 123456uniroma1.it

                This article was submitted to Movement Science and Sport Psychology, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2019.00890
                6497783
                f19bbddd-b43e-4e11-a329-d94ce942d7bf
                Copyright © 2019 Del Percio, Franzetti, De Matti, Noce, Lizio, Lopez, Soricelli, Ferri, Pascarelli, Rizzo, Triggiani, Stocchi, Limatola and Babiloni.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 October 2018
                : 03 April 2019
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 58, Pages: 11, Words: 0
                Categories
                Psychology
                Original Research

                Clinical Psychology & Psychiatry
                football (soccer) players,electroencephalography,alpha rhythms,visuospatial information processing,parietal cortex,neural efficiency,situational awareness

                Comments

                Comment on this article