20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Grain boundary stability governs hardening and softening in extremely fine nanograined metals

      , , , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A maximum in the strength of nanocrystalline copper.

          We used molecular dynamics simulations with system sizes up to 100 million atoms to simulate plastic deformation of nanocrystalline copper. By varying the grain size between 5 and 50 nanometers, we show that the flow stress and thus the strength exhibit a maximum at a grain size of 10 to 15 nanometers. This maximum is because of a shift in the microscopic deformation mechanism from dislocation-mediated plasticity in the coarse-grained material to grain boundary sliding in the nanocrystalline region. The simulations allow us to observe the mechanisms behind the grain-size dependence of the strength of polycrystalline metals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes.

            Nanostructured silicon is a promising anode material for high-performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (>20 μm) mesoporous silicon sponge prepared by the anodization method can limit the particle volume expansion at full lithiation to ~30% and prevent pulverization in bulk silicon particles. The mesoporous silicon sponge can deliver a capacity of up to ~750 mAh g(-1) based on the total electrode weight with >80% capacity retention over 1,000 cycles. The first cycle irreversible capacity loss of pre-lithiated electrode is <5%. Bulk electrodes with an area-specific-capacity of ~1.5 mAh cm(-2) and ~92% capacity retention over 300 cycles are also demonstrated. The insight obtained from this work also provides guidance for the design of other materials that may experience large volume variation during operations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deformation twinning in nanocrystalline aluminum.

              We report transmission electron microscope observations that provide evidence of deformation twinning in plastically deformed nanocrystalline aluminum. The presence of these twins is directly related to the nanocrystalline structure, because they are not observed in coarse-grained pure aluminum. We propose a dislocation-based model to explain the preference for deformation twins and stacking faults in nanocrystalline materials. These results underscore a transition from deformation mechanisms controlled by normal slip to those controlled by partial dislocation activity when grain size decreases to tens of nanometers, and they have implications for interpreting the unusual mechanical behavior of nanocrystalline materials.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                March 23 2017
                March 23 2017
                : 355
                : 6331
                : 1292-1296
                Article
                10.1126/science.aal5166
                28336664
                f1a0f151-44c1-4507-8948-0454c48089dc
                © 2017
                History

                Comments

                Comment on this article