28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Usher gene cadherin 23 is expressed in the zebrafish brain and a subset of retinal amacrine cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To characterize the expression pattern of cadherin 23 ( cdh23) in the zebrafish visual system, and to determine whether zebrafish cdh23 mutants have retinal defects similar to those present in the human disease Usher syndrome 1D.

          Methods

          In situ hybridization and immunohistochemistry were used to characterize cdh23 expression in the zebrafish, and to evaluate cdh23 mutants for retinal degeneration. Visual function was assessed by measurement of the optokinetic response in cdh23 siblings and mutants.

          Results

          We detected cdh23 mRNA expression in multiple nuclei of both the developing and adult central nervous system. In the retina, cdh23 mRNA was expressed in a small subset of amacrine cells, beginning at 70 h postfertilization and continuing through adulthood. No expression was detected in photoreceptors. The cdh23-positive population of amacrine cells was GABAergic. Examination of homozygous larvae expressing two different mutant alleles of cdh23—cdh23 tc317e or cdh23 tj264arevealed no detectable morphological retinal defects or degeneration. In addition, the optokinetic response to moving gratings of varied contrast or spatial frequency was normal in both mutants.

          Conclusions

          Unlike in other vertebrates, cdh23 is not detectable in zebrafish photoreceptors. Instead, cdh23 is expressed by a small subset of GABAergic amacrine cells. Moreover, larvae with mutations in cdh23 do not exhibit any signs of gross retinal degeneration or dysfunction. The role played by cdh23 in human retinal function is likely performed by either a different gene or an unidentified cdh23 splice variant in the retina that is not affected by the above mutations.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Cadherin 23 is a component of the tip link in hair-cell stereocilia.

          Mechanoelectrical transduction, the conversion of mechanical force into electrochemical signals, underlies a range of sensory phenomena, including touch, hearing and balance. Hair cells of the vertebrate inner ear are specialized mechanosensors that transduce mechanical forces arising from sound waves and head movement to provide our senses of hearing and balance; however, the mechanotransduction channel of hair cells and the molecules that regulate channel activity have remained elusive. One molecule that might participate in mechanoelectrical transduction is cadherin 23 (CDH23), as mutations in its gene cause deafness and age-related hearing loss. Furthermore, CDH23 is large enough to be the tip link, the extracellular filament proposed to gate the mechanotransduction channel. Here we show that antibodies against CDH23 label the tip link, and that CDH23 has biochemical properties similar to those of the tip link. Moreover, CDH23 forms a complex with myosin-1c, the only known component of the mechanotransduction apparatus, suggesting that CDH23 and myosin-1c cooperate to regulate the activity of mechanically gated ion channels in hair cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease.

            Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to severe congenital hearing loss, non-vestibular dysfunction and a later onset of RP. USH3 is characterized by variable RP and vestibular dysfunction combined with progressive hearing loss. The gene products of eight identified USH genes belong to different protein classes and families. There are five known USH1 molecules: the molecular motor myosin VIIa (USH1B); the two cell-cell adhesion cadherin proteins, cadherin 23 (USH1D) and protocadherin 15, (USH1F) and the scaffold proteins, harmonin (USH1C) and SANS (USH1G). In addition, two USH2 genes and one USH3A gene have been identified. The two USH2 genes code for the transmembrane protein USH2A, also termed USH2A ("usherin") and the G-protein-coupled 7-transmembrane receptor VLGR1b (USH2C), respectively, whereas the USH3A gene encodes clarin-1, a member of the clarin family which exhibits 4-transmembrane domains. Molecular analysis of USH1 protein function revealed that all five USH1 proteins are integrated into a protein network via binding to PDZ domains in the USH1C protein harmonin. Furthermore, this scaffold function of harmonin is supported by the USH1G protein SANS. Recently, we have shown that the USH2 proteins USH2A and VLGR1b as well as the candidate for USH2B, the sodium bicarbonate co-transporter NBC3, are also integrated into this USH protein network. In the inner ear, these interactions are essential for the differentiation of hair cell stereocilia but may also participate in the mechano-electrical signal transduction and the synaptic function of maturated hair cells. In the retina, the co-expression of all USH1 and USH2 proteins at the synapse of photoreceptor cells indicates that they are organized in an USH protein network there. The identification of the USH protein network indicates a common pathophysiological pathway in USH. Dysfunction or absence of any of the molecules in the mutual "interactome" related to the USH disease may lead to disruption of the network causing senso-neuronal degeneration in the inner ear and the retina, the clinical symptoms of USH.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              An Evolutionary Interpretation of Teleostean Forebrain Anatomy

              During the past few years, our investigations of the forebrain in the zebrafish (a teleost fish) have shown that its molecular anatomy and expression patterns of genes involved in the regulation of neuronal transmitter phenotypes, such as γ-aminobutyric acid- (GABA-)ergic neurons, are very similar to those seen in mammalian model organisms such as mouse and rat. For example, we have been able to identify previously undiscovered homologies, such as subpallial regions in the zebrafish that are homologous to the medial and lateral ganglionic eminences in mammals, as well as regions homologous to the larval eminentia thalami and its adult derivative, the bed nucleus of the stria medullaris. Furthermore, in what we term the partial eversion model of the telencephalon in teleosts, we propose homologies to all four mammalian pallial areas and conclude that the posterior zone of the dorsal telencephalic area in teleosts is homologous to the piriform cortex and is formed by a migratory stream of cells originating in a dorsomedial zone of the pallium (the primordial medial zone of area dorsalis telencephali). In this review we critically discuss and justify these findings in the context of forebrain evolution in fishes.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                Mol. Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2012
                05 September 2012
                : 18
                : 2309-2322
                Affiliations
                [1 ]Oregon Hearing Research Center and Vollum Institute, HHMI/Oregon Health & Science University, Portland, OR
                [2 ]Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
                [3 ]Max Planck Institute for Developmental Biology, Tübingen, Germany
                Author notes
                Correspondence to: Teresa Nicolson, Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Portland, OR 97219; Phone: (503) 494-3963; FAX: (503) 494-2976; email: nicolson@ 123456ohsu.edu
                Dr. Glover is now at Department of Biology, Lewis & Clark College, Portland, OR.
                Article
                245 2011MOLVIS0290
                3441156
                22977299
                f1af4109-7093-4b8f-a3f8-62709330ae6a
                Copyright © 2012 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 June 2011
                : 31 August 2012
                Categories
                Research Article
                Custom metadata
                Export to XML
                Nicolson

                Vision sciences
                Vision sciences

                Comments

                Comment on this article