178
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging and re-emerging viruses of the honey bee ( Apis mellifera L.)

      review-article
      1 , 2 , *
      Veterinary Research
      EDP Sciences
      honey bee, bee virus, paralysis, wing deformity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Until the late 1980s, specific viral infections of the honey bee were generally considered harmless in all countries. Then, with the worldwide introduction of the ectoparasite mite Varroa destructor, beekeepers encountered increasing difficulties in maintaining their colonies. Epidemiological surveys and laboratory experiments have demonstrated that the newly acquired virulence of several viruses belonging to the family Dicistroviridae (acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus) in Europe and the USA had been observed in relation with V. destructor acting as a disseminator of these viruses between and within bee colonies and as an activator of virus multiplication in the infected individuals: bee larvae and adults. Equal emphasis is given to deformed wing virus (DWV) belonging to the Iflaviridae. Overt outbreaks of DWV infections have been shown to be linked to the ability of V. destructor to act not only as a mechanical vector of DWV but also as a biological vector. Its replication in mites prior to its vectoring into pupae seemed to be necessary and sufficient for the induction of a overt infection in pupae developing in non-viable bees with deformed wings. DWV in V. destructor infested colonies is now considered as one of the key players of the final collapse. Various approaches for combating bee viral diseases are described: they include selection of tolerant bees, RNA interference and prevention of new pathogen introduction. None of these approaches are expected to lead to enhanced bee-health in the short term.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of gene silencing by double-stranded RNA.

          Double-stranded RNA (dsRNA) is an important regulator of gene expression in many eukaryotes. It triggers different types of gene silencing that are collectively referred to as RNA silencing or RNA interference. A key step in known silencing pathways is the processing of dsRNAs into short RNA duplexes of characteristic size and structure. These short dsRNAs guide RNA silencing by specific and distinct mechanisms. Many components of the RNA silencing machinery still need to be identified and characterized, but a more complete understanding of the process is imminent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Revealing the world of RNA interference.

            The recent discoveries of RNA interference and related RNA silencing pathways have revolutionized our understanding of gene regulation. RNA interference has been used as a research tool to control the expression of specific genes in numerous experimental organisms and has potential as a therapeutic strategy to reduce the expression of problem genes. At the heart of RNA interference lies a remarkable RNA processing mechanism that is now known to underlie many distinct biological phenomena.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification.

              Varroa mites (Varroa destructor) are ectoparasites of honey bees (Apis mellifera) and cause serious damage to bee colonies. The mechanism of how varroa mites kill honey bees remains unclear. We have addressed the effects of the mites on bee immunity and the replication of a picorna-like virus, the deformed wing virus (DWV). The expression of genes encoding three antimicrobial peptides (abaecin, defensin, and hymenoptaecin) and four immunity-related enzymes (phenol oxidase, glucose dehydrogenase, glucose oxidase, and lysozyme) were used as markers to measure the difference in the immune response. We have demonstrated an example of an ectoparasite immunosuppressing its invertebrate host with the evidence that parasitization significantly suppressed expression of these immunity-related genes. Given that ticks immunosuppress their vertebrate hosts, our finding indicates that immunosuppression of hosts may be a common phenomenon in the interaction and coevolution between ectoparasites and their vertebrate and invertebrate hosts. DWV viral titers were significantly negatively correlated with the expression levels of the immunity-related enzymes. All bees had detectable DWV. Mite-infested pupae developed into adults with either normal or deformed wings. All of the deformed-wing bees were greatly infected by DWV (approximately 10(6) times higher than varroa-infested but normal-winged bees). Injection with heat-killed bacteria dramatically promoted DWV titers (10(5) times in 10 h) in the mite-infested, normal-winged bees to levels similar to those found in mite-infested, deformed-wing bees. Varroa mites may cause the serious demise of honey bees by suppressing bee immunity and by boosting the amplification of DWV in bees exposed to microbes.
                Bookmark

                Author and article information

                Journal
                Vet Res
                vetres
                Veterinary Research
                EDP Sciences
                0928-4249
                1297-9716
                29 April 2010
                Nov-Dec 2010
                29 April 2010
                : 41
                : 6 , Emerging and re-emerging animal viruses ( publisher-idID: vetres/2010/06 )
                : 54
                Affiliations
                [1 ] Institute for Bee Research Friedrich-Engels-Str. 32 16540 Hohen Neuendorf Germany
                [2 ]Present address: 1088 chemin des Maures 83440 Callian France
                Author notes
                [* ]Corresponding author: aubert.michel@ 123456gmail.com
                Article
                v09562 10.1051/vetres/2010027
                10.1051/vetres/2010027
                2883145
                20423694
                f1becc6b-b291-402e-b688-82308abdfb5f
                © INRA, EDP Sciences, 2010

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly cited.

                History
                : 02 November 2009
                : 26 April 2010
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 135, Pages: 20
                Categories
                Review Article

                Veterinary medicine
                paralysis,wing deformity,bee virus,honey bee
                Veterinary medicine
                paralysis, wing deformity, bee virus, honey bee

                Comments

                Comment on this article