0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diversity in Mating Behavior of Hermaphroditic and Male–Female Caenorhabditis Nematodes

      , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we addressed why Caenorhabditis elegans males are inefficient at fertilizing their hermaphrodites. During copulation, hermaphrodites generally move away from males before they become impregnated. C. elegans hermaphrodites reproduce by internal self-fertilization, so that copulation with males is not required for species propagation. The hermaphroditic mode of reproduction could potentially relax selection for genes that optimize male mating behavior. We examined males from hermaphroditic and gonochoristic (male-female copulation) Caenorhabditis species to determine if they use different sensory and motor mechanisms to control their mating behavior. Instead, we found through laser ablation analysis and behavioral observations that hermaphroditic C. briggsae and gonochoristic C. remanei and Caenorhabditis species 4, PB2801 males produce a factor that immobilizes females during copulation. This factor also stimulates the vulval slit to widen, so that the male copulatory spicules can easily insert. C. elegans and C. briggsae hermaphrodites are not affected by this factor. We suggest that sensory and motor execution of mating behavior have not significantly changed among males of different Caenorhabditis species; however, during the evolution of internal self-fertilization, hermaphrodites have lost the ability to respond to the male soporific-inducing factor.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          C. elegans: des neurones et des gènes

          The human brain contains 100 billion neurons and probably one thousand times more synapses. Such a system can be analyzed at different complexity levels, from cognitive functions to molecular structure of ion channels. However, it remains extremely difficult to establish links between these different levels. An alternative strategy relies on the use of much simpler animals that can be easily manipulated. In 1974, S. Brenner introduced the nematode Caenorhabditis elegans as a model system. This worm has a simple nervous system that only contains 302 neurons and about 7,000 synapses. Forward genetic screens are powerful tools to identify genes required for specific neuron functions and behaviors. Moreover, studies of mutant phenotypes can identify the function of a protein in the nervous system. The data that have been obtained in C. elegans demonstrate a fascinating conservation of the molecular and cellular biology of the neuron between worms and mammals through more than 550 million years of evolution.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss.

              Despite the prominence of Caenorhabditis elegans as a major developmental and genetic model system, its phylogenetic relationship to its closest relatives has not been resolved. Resolution of these relationships is necessary for studying the steps that underlie life history, genomic, and morphological evolution of this important system. By using data from five different nuclear genes from 10 Caenorhabditis species currently in culture, we find a well resolved phylogeny that reveals three striking patterns in the evolution of this animal group: (i) Hermaphroditism has evolved independently in C. elegans and its close relative Caenorhabditis briggsae; (ii) there is a large degree of intron turnover within Caenorhabditis, and intron losses are much more frequent than intron gains; and (iii) despite the lack of marked morphological diversity, more genetic disparity is present within this one genus than has occurred within all vertebrates.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                April 20 2007
                April 2007
                April 2007
                February 04 2007
                : 175
                : 4
                : 1761-1771
                Article
                10.1534/genetics.106.068304
                1855125
                17277358
                f1c2040b-79ee-4874-a453-ef357b3fe3ee
                © 2007
                History

                Comments

                Comment on this article