12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      TGF beta (transforming growth factor beta) receptor type III directs clathrin-mediated endocytosis of TGF beta receptor types I and II.

      1 ,
      The Biochemical journal

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The TGFbeta (transforming growth factor beta) pathway is an essential cell signalling pathway that is implicated in both normal developmental processes, such as organogenesis, and pathological disorders, such as cancer and fibrosis. There are three prototypical TbetaRs (TGFbeta receptors): TbetaRI (TbetaR type I), TGbetaRII (TbetaR type II) and TGFbetaRIII (TbetaR type III, also known as betaglycan). Whereas the role of TbetaRII and TbetaRI in TGFbeta signal propagation has been established, the contribution of TbetaRIII to TGFbeta signalling is less well understood. At the cell surface, TbetaRI and TbetaRII receptors can be internalized by clathrin-mediated endocytosis and clathrin-independent membrane-raft-dependent endocytosis. Interestingly, the endocytic route of the receptors plays a direct role in TGFbeta-dependent Smad signal transduction; receptors endocytosed via clathrin-mediated endocytosis activate Smad signalling, whereas receptors endocytosed via membrane rafts are targeted for degradation. The objective of the present study was to evaluate the contribution of TbetaRIII to TbetaRII and TbetaRI membrane partitioning, receptor half-life and signalling. Using sucrose-density ultracentrifugation to isolate membrane-raft fractions, we show that TbetaRIII recruits both TbetaRII and TbetaRI to non-raft membrane fractions. Immunofluorescence microscopy analysis demonstrated that overexpression of TbetaRIII affects intracellular trafficking of TbetaRII by recruiting TbetaRII to EEA1 (early endosome antigen 1)- and Rab5-positive early endosomes. Using 125I-labelled TGFbeta1 to follow cell-surface receptor degradation we show that overexpression of TbetaRIII also extends the receptor half-life of the TbetaRII-TbetaRI complex. Interestingly, we also show, using a luciferase reporter assay, that TbetaRIII increases basal TGFbeta signalling. As numerous pathologies show aberrant activation of TGFbeta signalling, the present study illustrates that TbetaRIII may represent a novel therapeutic target.

          Related collections

          Author and article information

          Journal
          Biochem. J.
          The Biochemical journal
          1470-8728
          0264-6021
          Jul 1 2010
          : 429
          : 1
          Affiliations
          [1 ] Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
          Article
          BJ20091598
          10.1042/BJ20091598
          20406198
          f1c35cb6-d2cf-4467-b9c7-d6bda3dd4e55
          History

          Comments

          Comment on this article