12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of a monoclonal antibody 11C8B1 as a diagnostic marker of IDH2-mutated sinonasal undifferentiated carcinoma

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IDH2 R172 mutations occur in >80% sinonasal undifferentiated carcinomas ("SNUC") and ~80% of these are R172S and R172T variants. We examined the utility of the monoclonal antibody 11C8B1 to IDH2 R172S in IDH2 R172-mutated tumors to establish an immunohistochemistry protocol as a surrogate method for IDH2 R172S mutation detection. Eighty-eight formalin-fixed paraffin-embedded tumors including 42 sinonasal tumors and a variety of IDH1/2-mutated malignancies were tested by immunohistochemistry. The IDH1/2 mutation status was determined in 86 cases by a targeted massively parallel sequencing MSK-IMPACTTM assay. Interestingly, monoclonal antibody 11C8B1 was reactive with all IDH2 R172S (N = 15) mutated tumors including 12 sinonasal carcinomas, 2 high-grade sarcomas and one intrahepatic cholangiocarcinoma, and with all R172T (N = 3) mutated sinonasal carcinomas displaying a distinct granular cytoplasmic labeling in all R172S/T mutated malignancies. 11C8B1 immunohistochemistry was also positive in 2 of 6 IDH1 R132S-mutated tumors, including one intrahepatic cholangiocarcinoma and one chondrosarcoma showing a smooth homogeneous cytoplasmic staining pattern. All IDH2 R172G/K/M/W (N = 22) and IDH1 132H/C/G/L (N = 15) mutated tumors, and all IDH1/2-wild-type tumors (N = 25), including a histologic variety of 23 sinonasal tumors, were immunonegative. Importantly, 11 sinonasal undifferentiated carcinomas (N = 14, 79%) and 3 (100%) high-grade neuroendocrine carcinomas, large cell type were 11C8B1 immunopositive. Literature search revealed a virtual absence of IDH2 R172 and IDH1 R132S mutations in >1000 cases of 8 different malignancies included in the differential diagnosis of sinonasal undifferentiated carcinoma. Our study suggests that positive IDH2 11C8B1 immunohistochemistry in sinonasal carcinomas would be highly predictive of the presence of IDH2 R172S/T mutations and could serve as a reliable adjunct diagnostic marker of sinonasal undifferentiated carcinomas in >70% cases.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1.

          Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To explore the genetic origins of this cancer, we used whole-exome sequencing and gene copy number analyses to study 32 primary tumors. Tumors from patients with a history of tobacco use had more mutations than did tumors from patients who did not use tobacco, and tumors that were negative for human papillomavirus (HPV) had more mutations than did HPV-positive tumors. Six of the genes that were mutated in multiple tumors were assessed in up to 88 additional HNSCCs. In addition to previously described mutations in TP53, CDKN2A, PIK3CA, and HRAS, we identified mutations in FBXW7 and NOTCH1. Nearly 40% of the 28 mutations identified in NOTCH1 were predicted to truncate the gene product, suggesting that NOTCH1 may function as a tumor suppressor gene rather than an oncogene in this tumor type.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers.

            The survival of patients with oral squamous cell carcinoma (OSCC) has not changed significantly in several decades, leading clinicians and investigators to search for promising molecular targets. To this end, we conducted comprehensive genomic analysis of gene expression, copy number, methylation, and point mutations in OSCC. Integrated analysis revealed more somatic events than previously reported, identifying four major driver pathways (mitogenic signaling, Notch, cell cycle, and TP53) and two additional key genes (FAT1, CASP8). The Notch pathway was defective in 66% of patients, and in follow-up studies of mechanism, functional NOTCH1 signaling inhibited proliferation of OSCC cell lines. Frequent mutation of caspase-8 (CASP8) defines a new molecular subtype of OSCC with few copy number changes. Although genomic alterations are dominated by loss of tumor suppressor genes, 80% of patients harbored at least one genomic alteration in a targetable gene, suggesting that novel approaches to treatment may be possible for this debilitating subset of head and neck cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study.

              PURPOSE To analyze the frequency and associations with prognostic markers and outcome of mutations in IDH genes encoding isocitrate dehydrogenases in adult de novo cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS Diagnostic bone marrow or blood samples from 358 patients were analyzed for IDH1 and IDH2 mutations by DNA polymerase chain reaction amplification/sequencing. FLT3, NPM1, CEBPA, WT1, and MLL mutational analyses and gene- and microRNA-expression profiling were performed centrally. Results IDH mutations were found in 33% of the patients. IDH1 mutations were detected in 49 patients (14%; 47 with R132). IDH2 mutations, previously unreported in AML, were detected in 69 patients (19%; 13 with R172 and 56 with R140). R172 IDH2 mutations were mutually exclusive with all other prognostic mutations analyzed. Younger age (< 60 years), molecular low-risk (NPM1-mutated/FLT3-internal tandem duplication-negative) IDH1-mutated patients had shorter disease-free survival than molecular low-risk IDH1/IDH2-wild-type (wt) patients (P = .046). R172 IDH2-mutated patients had lower complete remission rates than IDH1/IDH2wt patients (P = .007). Distinctive microarray gene- and microRNA-expression profiles accurately predicted R172 IDH2 mutations. The highest expressed gene and microRNAs in R172 IDH2-mutated patients compared with the IDH1/IDH2wt patients were APP (previously associated with complex karyotype AML) and miR-1 and miR-133 (involved in embryonal stem-cell differentiation), respectively. CONCLUSION IDH1 and IDH2 mutations are recurrent in CN-AML and have an unfavorable impact on outcome. The R172 IDH2 mutations, previously unreported in AML, characterize a novel subset of CN-AML patients lacking other prognostic mutations and associate with unique gene- and microRNA-expression profiles that may lead to the discovery of novel, therapeutically targetable leukemogenic mechanisms.
                Bookmark

                Author and article information

                Journal
                Modern Pathology
                Mod Pathol
                Springer Nature America, Inc
                0893-3952
                1530-0285
                September 11 2018
                Article
                10.1038/s41379-018-0126-3
                7429919
                30206411
                f1caab0f-8db7-41ff-82ab-985bc79e15ac
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article