108
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Classical Interaction of a Magnet and a Point Charge: The Shockley-James Paradox

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is pointed out that Coleman and Van Vleck make a major blunder in their discussion of the Shockly-James paradox by designating relativistic hidden mechanical momentum as the basis for resolution of the paradox. This blunder has had a wide influence in the current physics literature, including erroneous work on the Shockley-James paradox, on Mansuripur's paradox, on the motion of a magnetic moment, on the Aharonov-Bohm phase shift, and on the Aharonov-Casher phase shift. Although hidden mechanical momentum is indeed dominant for non-interacting particles moving in a closed orbit under the influence of an external electric field, the attention directed toward hidden mechanical momentum represents a fundamental misunderstanding of the classical electromagnetic interaction between a multiparticle magnet and an external point charge. In the interacting multiparticle situation, the external charge induces an electrostatic polarization of the magnet which leads to an internal electromagnetic momentum in the magnet where both the electric and magnetic fields for the momentum are contributed by the magnet particles. This internal electromagnetic momentum for the interacting multiparticle situation is equal in magnitude and opposite in direction compared to the familiar external electromagnetic momentum where the electric field is contributed by the external charged particle and the magnetic field is that due to the magnet. In the present article, the momentum balance of the Shockley-James situation for a system of a magnet and a point charge is calculated in detail for a magnet model consisting of two interacting point charges which are constrained to move in a circular orbit on a frictionless ring with a compensating negative charge at the center.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: not found
          • Article: not found

          Origin of "Hidden Momentum Forces" on Magnets

            Bookmark

            Author and article information

            Journal
            1408.3742

            Classical mechanics
            Classical mechanics

            Comments

            Comment on this article