8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large animal studies are an important step toward clinical translation of novel therapeutic approaches. We aimed to establish an ischemic heart failure (HF) model with a larger myocardial infarction (MI) relative to previous studies, and characterize the functional and structural features of this model. An MI was induced by occluding the proximal left anterior descending artery (LAD; n = 15) or the proximal left circumflex artery (LCx; n = 6) in Yorkshire pigs. Three pigs with sham procedures were also included. All pigs underwent hemodynamic and echocardiographic assessments before MI, at 1 mo, and 3 mo after MI. Analyses of left ventricular (LV) myocardial mechanics by means of strains and torsion were performed using speckle-tracking echocardiography and compared between the groups. The proximal LAD MI approach induced larger infarct sizes (14.2 ± 3.2% vs. 10.6 ± 1.9%, P = 0.03), depressed systolic function (LV ejection fraction; 39.8 ± 7.5% vs. 54.1 ± 4.6%, P < 0.001), and more LV remodeling (end-systolic volume index; 82 ± 25 ml/m 2 vs. 51 ± 18 ml/m 2, P = 0.02, LAD vs. LCx, respectively) compared with the LCx MI approach without compromising the survival rate. At the papillary muscle level, echocardiographic strain analysis revealed no differences in radial and circumferential strain between LAD and LCx MIs. However, in contrast with the LCx MI, the LAD MI resulted in significantly decreased longitudinal strain. The proximal LAD MI model induces more LV remodeling and depressed LV function relative to the LCx MI model. Location of MI significantly impacts the severity of HF, thus careful consideration is required when choosing an MI model for preclinical HF studies.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial.

          Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. clinicaltrials.gov Identifier: NCT01087996.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Heart disease and stroke statistics--2012 update: a report from the American Heart Association.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation.

              The regenerative potential of the heart is insufficient to fully restore functioning myocardium after injury, motivating the quest for a cell-based replacement strategy. Bone marrow-derived mesenchymal stem cells (MSCs) have the capacity for cardiac repair that appears to exceed their capacity for differentiation into cardiac myocytes. Here, we test the hypothesis that bone marrow derived MSCs stimulate the proliferation and differentiation of endogenous cardiac stem cells (CSCs) as part of their regenerative repertoire. Female Yorkshire pigs (n=31) underwent experimental myocardial infarction (MI), and 3 days later, received transendocardial injections of allogeneic male bone marrow-derived MSCs, MSC concentrated conditioned medium (CCM), or placebo (Plasmalyte). A no-injection control group was also studied. MSCs engrafted and differentiated into cardiomyocytes and vascular structures. In addition, endogenous c-kit(+) CSCs increased 20-fold in MSC-treated animals versus controls (P<0.001), there was a 6-fold increase in GATA-4(+) CSCs in MSC versus control (P<0.001), and mitotic myocytes increased 4-fold (P=0.005). Porcine endomyocardial biopsies were harvested and plated as organotypic cultures in the presence or absence of MSC feeder layers. In vitro, MSCs stimulated c-kit(+) CSCs proliferation into enriched populations of adult cardioblasts that expressed Nkx2-5 and troponin I. MSCs stimulate host CSCs, a new mechanism of action underlying successful cell-based therapeutics.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Heart and Circulatory Physiology
                American Journal of Physiology-Heart and Circulatory Physiology
                American Physiological Society
                0363-6135
                1522-1539
                November 15 2014
                November 15 2014
                : 307
                : 10
                : H1478-H1486
                Affiliations
                [1 ]Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York; and
                [2 ]Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
                Article
                10.1152/ajpheart.00797.2013
                f1d2c216-5336-499c-8b12-3d4af08bfab0
                © 2014
                History

                Comments

                Comment on this article