21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Widespread patterns of sexually dimorphic gene expression in an avian hypothalamic–pituitary–gonadal (HPG) axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hypothalamic-pituitary-gonadal (HPG) axis is a key biological system required for reproduction and associated sexual behaviors to occur. In the avian reproductive model of the rock dove ( Columba livia), we characterized the transcript community of each tissue of the HPG axis in both sexes, thereby significantly expanding our mechanistic insight into HPG activity. We report greater sex-biased differential expression in the pituitary as compared to the hypothalamus, with multiple genes more highly expressed in the male pituitary being related to secretory function, and multiple genes more highly expressed in the female pituitary being related to reproduction, growth, and development. We report tissue-specific and sex-biased expression in genes commonly investigated when studying reproduction, highlighting the need for sex parity in future studies. In addition, we uncover new targets of investigation in both sexes, which could potentially change our understanding of HPG function.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          TCDB: the Transporter Classification Database for membrane transport protein analyses and information

          The Transporter Classification Database (TCDB) is a web accessible, curated, relational database containing sequence, classification, structural, functional and evolutionary information about transport systems from a variety of living organisms. TCDB is a curated repository for factual information compiled from >10 000 references, encompassing ∼3000 representative transporters and putative transporters, classified into >400 families. The transporter classification (TC) system is an International Union of Biochemistry and Molecular Biology approved system of nomenclature for transport protein classification. TCDB is freely accessible at . The web interface provides several different methods for accessing the data, including step-by-step access to hierarchical classification, direct search by sequence or TC number and full-text searching. The functional ontology that underlies the database structure facilitates powerful query searches that yield valuable data in a quick and easy way. The TCDB website also offers several tools specifically designed for analyzing the unique characteristics of transport proteins. TCDB not only provides curated information and a tool for classifying newly identified membrane proteins, but also serves as a genome transporter-annotation tool.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EGF-like growth factors as mediators of LH action in the ovulatory follicle.

            Before ovulation in mammals, a cascade of events resembling an inflammatory and/or tissue remodeling process is triggered by luteinizing hormone (LH) in the ovarian follicle. Many LH effects, however, are thought to be indirect because of the restricted expression of its receptor. Here, we demonstrate that LH stimulation induces the transient and sequential expression of the epidermal growth factor (EGF) family members amphiregulin, epiregulin, and beta-cellulin. Incubation of follicles with these growth factors recapitulates the morphological and biochemical events triggered by LH, including cumulus expansion and oocyte maturation. Thus, these EGF-related growth factors are paracrine mediators that propagate the LH signal throughout the follicle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs

              The concept of orthology provides a foundation for formulating hypotheses on gene and genome evolution, and thus forms the cornerstone of comparative genomics, phylogenomics and metagenomics. We present the update of OrthoDB—the hierarchical catalog of orthologs (http://www.orthodb.org). From its conception, OrthoDB promoted delineation of orthologs at varying resolution by explicitly referring to the hierarchy of species radiations, now also adopted by other resources. The current release provides comprehensive coverage of animals and fungi representing 252 eukaryotic species, and is now extended to prokaryotes with the inclusion of 1115 bacteria. Functional annotations of orthologous groups are provided through mapping to InterPro, GO, OMIM and model organism phenotypes, with cross-references to major resources including UniProt, NCBI and FlyBase. Uniquely, OrthoDB provides computed evolutionary traits of orthologs, such as gene duplicability and loss profiles, divergence rates, sibling groups, and now extended with exon–intron architectures, syntenic orthologs and parent–child trees. The interactive web interface allows navigation along the species phylogenies, complex queries with various identifiers, annotation keywords and phrases, as well as with gene copy-number profiles and sequence homology searches. With the explosive growth of available data, OrthoDB also provides mapping of newly sequenced genomes and transcriptomes to the current orthologous groups.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                18 April 2017
                2017
                : 7
                : 45125
                Affiliations
                [1 ]Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire , Durham NH 03824, USA
                [2 ]Department of Neurobiology, Physiology, and Behavior, University of California , Davis. Davis CA. 95616, USA
                Author notes
                Article
                srep45125
                10.1038/srep45125
                5394691
                28417958
                f1d5b9fc-f36e-48e1-96ff-80b1801af90c
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 November 2016
                : 16 February 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article