129
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sideband Cooling Micromechanical Motion to the Quantum Ground State

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Synthesizing arbitrary quantum states in a superconducting resonator.

          The superposition principle is a fundamental tenet of quantum mechanics. It allows a quantum system to be 'in two places at the same time', because the quantum state of a physical system can simultaneously include measurably different physical states. The preparation and use of such superposed states forms the basis of quantum computation and simulation. The creation of complex superpositions in harmonic systems (such as the motional state of trapped ions, microwave resonators or optical cavities) has presented a significant challenge because it cannot be achieved with classical control signals. Here we demonstrate the preparation and measurement of arbitrary quantum states in an electromagnetic resonator, superposing states with different numbers of photons in a completely controlled and deterministic manner. We synthesize the states using a superconducting phase qubit to phase-coherently pump photons into the resonator, making use of an algorithm that generalizes a previously demonstrated method of generating photon number (Fock) states in a resonator. We completely characterize the resonator quantum state using Wigner tomography, which is equivalent to measuring the resonator's full density matrix.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Introduction to Quantum Noise, Measurement and Amplification

            The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and AMO/quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification. After introducing quantum noise spectra and methods for their detection, we describe the basics of weak continuous measurements. Particular attention is given to treating the standard quantum limit on linear amplifiers and position detectors using a general linear-response framework. We show how this approach relates to the standard Haus-Caves quantum limit for a bosonic amplifier known in quantum optics, and illustrate its application for the case of electrical circuits, including mesoscopic detectors and resonant cavity detectors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Strong dispersive coupling of a high finesse cavity to a micromechanical membrane

              Macroscopic mechanical objects and electromagnetic degrees of freedom couple to each other via radiation pressure. Optomechanical systems with sufficiently strong coupling are predicted to exhibit quantum effects and are a topic of considerable interest. Devices reaching this regime would offer new types of control of the quantum state of both light and matter and would provide a new arena in which to explore the boundary between quantum and classical physics. Experiments to date have achieved sufficient optomechanical coupling to laser-cool mechanical devices but have not yet reached the quantum regime. The outstanding technical challenge in this field is integrating sensitive micromechanical elements (which must be small, light, and flexible) into high finesse cavities (which are typically much more rigid and massive) without compromising the mechanical or optical properties of either. A second, and more fundamental, challenge is to read out the mechanical element's quantum state: displacement measurements (no matter how sensitive) cannot determine the energy eigenstate of an oscillator, and measurements which couple to quantities other than displacement have been difficult to realize. Here we present a novel optomechanical system which seems to resolve both these challenges. We demonstrate a cavity which is detuned by the motion of a thin dielectric membrane placed between two macroscopic, rigid, high-finesse mirrors. This approach segregates optical and mechanical functionality to physically distinct structures and avoids compromising either. It also allows for direct measurement of the square of the membrane's displacement, and thus in principle the membrane's energy eigenstate. We estimate it should be practical to use this scheme to observe quantum jumps of a mechanical system.
                Bookmark

                Author and article information

                Journal
                10 March 2011
                Article
                10.1038/nature10261
                1103.2144
                f1d6f8c8-0e83-4933-bd13-01c7e6f0b2ce

                http://creativecommons.org/licenses/publicdomain/

                History
                Custom metadata
                Nature 475, 359-363 (2011)
                13 pages, 7 figures
                quant-ph

                Comments

                Comment on this article