54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization of a DNA Nicking Assay to Evaluate Oenocarpus bataua and Camellia sinensis Antioxidant Capacity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was aimed at assessing the DNA damage protective activity of different types of extracts (aqueous, methanolic and acetonic) using an in vitro DNA nicking assay. Several parameters were optimized using the pUC18 plasmid, especially FeSO 4, EDTA, solvent concentrations and incubation time. Special attention has been paid to removing the protective and damaging effect of the solvent and FeSO 4 respectively, as well as to identifying the relevant positive and negative controls. For each solvent, the optimal conditions were determined: (i) for aqueous extracts, 0.33 mM of FeSO 4 and 0.62 mM of EDTA were incubated for 20 min at 37 °C; (ii) for acetone extracts, 1.16% solvent were incubated for 15 min at 37 °C with 1.3 mM of FeSO 4 and 2.5 mM of EDTA and (iii) for methanol extracts, 0.16% solvent, were incubated for 1.5 h at 37 °C with 0.33 mM of FeSO 4 and 0.62 mM of EDTA. Using the optimized conditions, the DNA damage protective activity of aqueous, methanolic and acetonic extracts of an Amazonian palm berry ( Oenocarpus bataua) and green tea ( Camellia sinensis) was assessed. Aqueous and acetonic Oenocarpus bataua extracts were protective against DNA damage, whereas aqueous, methanolic and acetonic extracts of Camellia sinensis extracts induced DNA damage.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial oxidative stress: implications for cell death.

          In addition to the established role of the mitochondria in energy metabolism, regulation of cell death has emerged as a second major function of these organelles. This seems to be intimately linked to their generation of reactive oxygen species (ROS), which have been implicated in mtDNA mutations, aging, and cell death. Mitochondrial regulation of apoptosis occurs by mechanisms, which have been conserved through evolution. Thus, many lethal agents target the mitochondria and cause release of cytochrome c and other pro-apoptotic proteins into the cytoplasm. Cytochrome c release is initiated by the dissociation of the hemoprotein from its binding to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and increases the level of soluble cytochrome c in the intermembrane space. Subsequent release of the hemoprotein occurs by pore formation mediated by pro-apoptotic Bcl-2 family proteins, or by Ca(2+) and ROS-triggered mitochondrial permeability transition, although the latter pathway might be more closely associated with necrosis. Taken together, these findings have placed the mitochondria in the focus of current cell death research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative DNA damage and disease: induction, repair and significance.

            The generation of reactive oxygen species may be both beneficial to cells, performing a function in inter- and intracellular signalling, and detrimental, modifying cellular biomolecules, accumulation of which has been associated with numerous diseases. Of the molecules subject to oxidative modification, DNA has received the greatest attention, with biomarkers of exposure and effect closest to validation. Despite nearly a quarter of a century of study, and a large number of base- and sugar-derived DNA lesions having been identified, the majority of studies have focussed upon the guanine modification, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-OH-dG). For the most part, the biological significance of other lesions has not, as yet, been investigated. In contrast, the description and characterisation of enzyme systems responsible for repairing oxidative DNA base damage is growing rapidly, being the subject of intense study. However, there remain notable gaps in our knowledge of which repair proteins remove which lesions, plus, as more lesions identified, new processes/substrates need to be determined. There are many reports describing elevated levels of oxidatively modified DNA lesions, in various biological matrices, in a plethora of diseases; however, for the majority of these the association could merely be coincidental, and more detailed studies are required. Nevertheless, even based simply upon reports of studies investigating the potential role of 8-OH-dG in disease, the weight of evidence strongly suggests a link between such damage and the pathogenesis of disease. However, exact roles remain to be elucidated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants.

              Y Sakihama (2002)
              Plant phenolic compounds such as flavonoids and lignin precursors are important constituents of the human diet. These dietary phytophenolics have been recognized largely as beneficial antioxidants that can scavenge harmful active oxygen species including O(2)(.-), H(2)O(2), .OH, and (1)O(2). Here we review our current understanding of the antioxidant and prooxidant actions of phenolics in plant cells. In plant systems, phytophenolics can act as antioxidants by donating electrons to guaiacol-type peroxidases (GuPXs) for the detoxification of H(2)O(2) produced under stress conditions. As a result of such enzymatic as well as non-enzymatic antioxidant reactions, phenoxyl radicals are formed as the primary oxidized products. Until recently, phenoxyl radicals had been difficult to detect by static electron spin resonance (ESR) because they rapidly change to non-radical products. Application of Zn exerts spin-stabilizing effects on phenoxyl radicals that enables us to analyze the formation and decay kinetics of the radicals. The ESR signals of phenoxyl radicals are eliminated by monodehydroascorbate radical (MDA) reductase, suggesting that phenoxyl radicals, like the ascorbate radical, are enzymatically recycled to parent phenolics. Thus, phenolics in plant cells can form an antioxidant system equivalent to that of ascorbate. In contrast to their antioxidant activity, phytophenolics also have the potential to act as prooxidants under certain conditions. For example, flavonoids and dihydroxycinnamic acids can nick DNA via the production of radicals in the presence of Cu and O(2). Phenoxyl radicals can also initiate lipid peroxidation. Recently, Al, Zn, Ca, Mg and Cd have been found to stimulate phenoxyl radical-induced lipid peroxidation. We discuss the mechanism of phenoxyl radical prooxidant activity in terms of lifetime prolongation by spin-stabilizing agents.
                Bookmark

                Author and article information

                Contributors
                Role: External Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                09 October 2014
                October 2014
                : 15
                : 10
                : 18023-18039
                Affiliations
                Université des Antilles et de la Guyane, UMR QUALITROP, campus universitaire de Troubiran, P.O. Box 792, 97337 Cayenne Cedex, French Guiana, France; E-Mails: ljleba@ 123456pasteur-cayenne.fr (L.-J.L.); christel.brunschwig@ 123456gmail.com (C.B.); mona_saout@ 123456hotmail.com (M.S.); karine.martial@ 123456guyane.univ-ag.fr (K.M.); ema_vulcain@ 123456yahoo.fr (E.V.); didier.bereau@ 123456guyane.univ-ag.fr (D.B.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: jean-charles.robinson@ 123456guyane.univ-ag.fr ; Tel.: +594-594-299-946.
                Article
                ijms-15-18023
                10.3390/ijms151018023
                4227202
                25302614
                f1d7ba82-f47f-46d2-8255-08489ae203d9
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 July 2014
                : 18 September 2014
                : 25 September 2014
                Categories
                Article

                Molecular biology
                puc18,antioxidant,prooxidant,dna nicking assay,fenton,amazonian palm,oenocarpus bataua,camellia sinensis

                Comments

                Comment on this article