16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neuroendocrine function and response to stress in mice with complete disruption of glucagon-like peptide-1 receptor signaling.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucagon-like peptide-1 (GLP-1), a potent regulator of glucose homeostasis, is also produced in the central nervous system, where GLP-1 has been implicated in the neuroendocrine control of hypothalamic-pituitary function, food intake, and the response to stress. The finding that intracerebroventricular GLP-1 stimulates LH, TSH, corticosterone, and vasopressin secretion in rats prompted us to assess the neuroendocrine consequences of disrupting GLP-1 signaling in mice in vivo. Male GLP-1 receptor knockout (GLP-1R-/-) mice exhibit reduced gonadal weights, and females exhibit a slight delay in the onset of puberty; however, male and female GLP-1R-/- animals reproduce successfully and respond appropriately to fluid restriction. Although adrenal weights are reduced in GLP-1R-/- mice, hypothalamic CRH gene expression and circulating levels of corticosterone, thyroid hormone, testosterone, estradiol, and progesterone are normal in the absence of GLP-1R-/- signaling. Intriguingly, GLP-1R-/- mice exhibit paradoxically increased corticosterone responses to stress as well as abnormal responses to acoustic startle that are corrected by glucocorticoid treatment. These findings suggest that although GLP-1R signaling is not essential for development and basal function of the murine hypothalamic-pituitary-adrenal axis, abrogation of GLP-1 signaling is associated with impairment of the behavioral and neuroendocrine responses to stress.

          Related collections

          Author and article information

          Journal
          Endocrinology
          Endocrinology
          The Endocrine Society
          0013-7227
          0013-7227
          Feb 2000
          : 141
          : 2
          Affiliations
          [1 ] Department of Reproductive Science, University of Toronto, Ontario, Canada.
          Article
          10.1210/endo.141.2.7326
          10650957
          f1d8a1f5-a0fe-474c-b6ba-b63833707112
          History

          Comments

          Comment on this article