8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A unified nomenclature for vertebrate olfactory receptors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Olfactory receptors (ORs) are G protein-coupled receptors with a crucial role in odor detection. A typical mammalian genome harbors ~ 1000 OR genes and pseudogenes; however, different gene duplication/deletion events have occurred in each species, resulting in complex orthology relationships. While the human OR nomenclature is widely accepted and based on phylogenetic classification into 18 families and further into subfamilies, for other mammals different and multiple nomenclature systems are currently in use, thus concealing important evolutionary and functional insights.

          Results

          Here, we describe the Mutual Maximum Similarity (MMS) algorithm, a systematic classifier for assigning a human-centric nomenclature to any OR gene based on inter-species hierarchical pairwise similarities. MMS was applied to the OR repertoires of seven mammals and zebrafish. Altogether, we assigned symbols to 10,249 ORs. This nomenclature is supported by both phylogenetic and synteny analyses. The availability of a unified nomenclature provides a framework for diverse studies, where textual symbol comparison allows immediate identification of potential ortholog groups as well as species-specific expansions/deletions; for example, Or52e5 and Or52e5b represent a rat-specific duplication of OR52E5. Another example is the complete absence of OR subfamily OR6Z among primate OR symbols. In other mammals, OR6Z members are located in one genomic cluster, suggesting a large deletion in the great ape lineage. An additional 14 mammalian OR subfamilies are missing from the primate genomes. While in chimpanzee 87% of the symbols were identical to human symbols, this number decreased to ~ 50% in dog and cow and to ~ 30% in rodents, reflecting the adaptive changes of the OR gene superfamily across diverse ecological niches. Application of the proposed nomenclature to zebrafish revealed similarity to mammalian ORs that could not be detected from the current zebrafish olfactory receptor gene nomenclature.

          Conclusions

          We have consolidated a unified standard nomenclature system for the vertebrate OR superfamily. The new nomenclature system will be applied to cow, horse, dog and chimpanzee by the Vertebrate Gene Nomenclature Committee and its implementation is currently under consideration by other relevant species-specific nomenclature committees.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Insights into hominid evolution from the gorilla genome sequence

          Summary Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago (Mya). In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Genome analysis of the platypus reveals unique signatures of evolution.

            We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The olfactory receptor gene superfamily of the mouse

              Olfactory receptor (OR) genes are the largest gene superfamily in vertebrates. We have identified the mouse OR genes from the nearly complete Celera mouse genome by a comprehensive data mining strategy. We found 1,296 mouse OR genes (including 20% pseudogenes), which can be classified into 228 families. OR genes are distributed in 27 clusters on all mouse chromosomes except 12 and Y. One OR gene cluster matches a known locus mediating a specific anosmia, indicating the anosmia may be due directly to the loss of receptors. A large number of apparently functional 'fish-like' Class I OR genes in the mouse genome may have important roles in mammalian olfaction. Human ORs cover a similar 'receptor space' as the mouse ORs, suggesting that the human olfactory system has retained the ability to recognize a broad spectrum of chemicals even though humans have lost nearly two-thirds of the OR genes as compared to mice.
                Bookmark

                Author and article information

                Contributors
                Tsviya.olender@weizmann.ac.il
                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                15 April 2020
                15 April 2020
                2020
                : 20
                : 42
                Affiliations
                [1 ]GRID grid.13992.30, ISNI 0000 0004 0604 7563, Department of Molecular Genetics, , Weizmann Institute of Science, ; 76100 Rehovot, Israel
                [2 ]GRID grid.225360.0, ISNI 0000 0000 9709 7726, HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, , European Bioinformatics Institute, Wellcome Genome Campus, ; Hinxton, Cambridgeshire, CB10 1SD UK
                [3 ]GRID grid.5335.0, ISNI 0000000121885934, Department of Haematology, , University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, ; Cambridge, CB2 0AW UK
                Article
                1607
                10.1186/s12862-020-01607-6
                7160942
                32295537
                f1dbea46-64ed-42b6-9b5f-4d5398bef999
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 10 September 2019
                : 27 March 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000051, National Human Genome Research Institute;
                Award ID: U41HG003345
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100004440, Wellcome Trust;
                Award ID: 208349/Z/17/Z
                Award Recipient :
                Categories
                Methodology Article
                Custom metadata
                © The Author(s) 2020

                Evolutionary Biology
                olfaction,nomenclature,olfactory receptors,orthologs,paralogs,evolution
                Evolutionary Biology
                olfaction, nomenclature, olfactory receptors, orthologs, paralogs, evolution

                Comments

                Comment on this article