11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Semantic discrimination impacts tDCS modulation of verb processing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motor cortex activation observed during body-related verb processing hints at simulation accompanying linguistic understanding. By exploiting the up- and down-regulation that anodal and cathodal transcranial direct current stimulation (tDCS) exert on motor cortical excitability, we aimed at further characterizing the functional contribution of the motor system to linguistic processing. In a double-blind sham-controlled within-subjects design, online stimulation was applied to the left hemispheric hand-related motor cortex of 20 healthy subjects. A dual, double-dissociation task required participants to semantically discriminate concrete (hand/foot) from abstract verb primes as well as to respond with the hand or with the foot to verb-unrelated geometric targets. Analyses were conducted with linear mixed models. Semantic priming was confirmed by faster and more accurate reactions when the response effector was congruent with the verb’s body part. Cathodal stimulation induced faster responses for hand verb primes thus indicating a somatotopical distribution of cortical activation as induced by body-related verbs. Importantly, this effect depended on performance in semantic discrimination. The current results point to verb processing being selectively modifiable by neuromodulation and at the same time to a dependence of tDCS effects on enhanced simulation. We discuss putative mechanisms operating in this reciprocal dependence of neuromodulation and motor resonance.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Grounded cognition.

          Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Modelling non-invasive brain stimulation in cognitive neuroscience.

            Non-invasive brain stimulation (NIBS) is a method for the study of cognitive function that is quickly gaining popularity. It bypasses the correlative approaches of other imaging techniques, making it possible to establish a causal relationship between cognitive processes and the functioning of specific brain areas. Like lesion studies, NIBS can provide information about where a particular process occurs. However, NIBS offers the opportunity to study brain mechanisms beyond process localisation, providing information about when activity in a given brain region is involved in a cognitive process, and even how it is involved. When using NIBS to explore cognitive processes, it is important to understand not only how NIBS functions but also the functioning of the neural structures themselves. We know that NIBS techniques have the potential to transiently influence behaviour by altering neuronal activity, which may have facilitatory or inhibitory behavioural effects, and these alterations can be used to understand how the brain works. Given that NIBS necessarily involves the relatively indiscriminate activation of large numbers of neurons, its impact on a neural system can be easily understood as modulation of neural activity that changes the relation between noise and signal. In this review, we describe the mutual interactions between NIBS and brain activity and provide an updated and precise perspective on the theoretical frameworks of NIBS and their impact on cognitive neuroscience. By transitioning our discussion from one aspect (NIBS) to the other (cognition), we aim to provide insights to guide future research. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional links between motor and language systems.

              Transcranial magnetic stimulation (TMS) was applied to motor areas in the left language-dominant hemisphere while right-handed human subjects made lexical decisions on words related to actions. Response times to words referring to leg actions (e.g. kick) were compared with those to words referring to movements involving the arms and hands (e.g. pick). TMS of hand and leg areas influenced the processing of arm and leg words differentially, as documented by a significant interaction of the factors Stimulation site and Word category. Arm area TMS led to faster arm than leg word responses and the reverse effect, faster lexical decisions on leg than arm words, was present when TMS was applied to leg areas. TMS-related differences between word categories were not seen in control conditions, when TMS was applied to hand and leg areas in the right hemisphere and during sham stimulation. Our results show that the left hemispheric cortical systems for language and action are linked to each other in a category-specific manner and that activation in motor and premotor areas can influence the processing of specific kinds of words semantically related to arm or leg actions. By demonstrating specific functional links between action and language systems during lexical processing, these results call into question modular theories of language and motor functions and provide evidence that the two systems interact in the processing of meaningful information about language and action.
                Bookmark

                Author and article information

                Contributors
                Valentina.Niccolai@hhu.de
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 December 2017
                7 December 2017
                2017
                : 7
                : 17162
                Affiliations
                [1 ]ISNI 0000 0001 2176 9917, GRID grid.411327.2, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, ; Duesseldorf, Germany
                [2 ]ISNI 0000 0001 2176 9917, GRID grid.411327.2, Institute for Linguistics and Information Science, Heinrich-Heine-University, ; Duesseldorf, Germany
                [3 ]ISNI 0000000122931605, GRID grid.5590.9, Donders Institute for Brain, Cognition and Behaviour, Radboud University, ; Nijmegen, Netherlands
                Article
                17326
                10.1038/s41598-017-17326-w
                5719444
                29215039
                f1f61b24-1e12-463e-aaca-766dd7f97e45
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 March 2017
                : 17 November 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article