26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Stretchable Electromagnetic Absorber Fabricated Using Screen Printing Technology

      research-article
      , *
      Sensors (Basel, Switzerland)
      MDPI
      electromagnetic, absorber, screen printing, stretchable

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A stretchable electromagnetic absorber fabricated using screen printing technology is proposed in this paper. We used a polydimethylsiloxane (PDMS) substrate to fabricate the stretchable absorber since PDMS exhibits good dielectric properties, flexibility, and restoring capabilities. DuPont PE872 (DuPont, Wilmington, CT, USA), a stretchable silver conductive ink, was used for the screen printing technique. The reflection coefficient of the absorber was measured using a vector network analyzer and a waveguide. The proposed absorber was designed as a rectangular patch unit cell, wherein the top of the unit cell acted as the patch and the bottom formed the ground. The size of the patch was 8 mm × 7 mm. The prototype of the absorber consisted of two unit cells such that it fits into the WR-90 waveguide (dimensions: 22.86 mm × 10.16 mm) for experimental measurement. Before stretching the absorber, the resonant frequency was 11 GHz. When stretched along the x-direction, the resonant frequency shifted by 0.1 GHz, from 11 to 10.9 GHz, demonstrating 99% absorption. Furthermore, when stretched along the y-direction, the resonant frequency shifted by 0.6 GHz, from 11 to 10.4 GHz, demonstrating 99% absorption.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Active terahertz metamaterial devices.

          The development of artificially structured electromagnetic materials, termed metamaterials, has led to the realization of phenomena that cannot be obtained with natural materials. This is especially important for the technologically relevant terahertz (1 THz = 10(12) Hz) frequency regime; many materials inherently do not respond to THz radiation, and the tools that are necessary to construct devices operating within this range-sources, lenses, switches, modulators and detectors-largely do not exist. Considerable efforts are underway to fill this 'THz gap' in view of the useful potential applications of THz radiation. Moderate progress has been made in THz generation and detection; THz quantum cascade lasers are a recent example. However, techniques to control and manipulate THz waves are lagging behind. Here we demonstrate an active metamaterial device capable of efficient real-time control and manipulation of THz radiation. The device consists of an array of gold electric resonator elements (the metamaterial) fabricated on a semiconductor substrate. The metamaterial array and substrate together effectively form a Schottky diode, which enables modulation of THz transmission by 50 per cent, an order of magnitude improvement over existing devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Perfect Metamaterial Absorber

            We present the design for an absorbing metamaterial element with near unity absorbance. Our structure consists of two metamaterial resonators that couple separately to electric and magnetic fields so as to absorb all incident radiation within a single unit cell layer. We fabricate, characterize, and analyze a metamaterial absorber with a slightly lower predicted absorbance of 96%. This achieves a simulated full width at half maximum (FWHM) absorbance of 4% thus making this material ideal for imaging purposes. Unlike conventional absorbers, our metamaterial consists solely of metallic elements. The underlying substrate can therefore be chosen independently of the substrate's absorptive qualities and optimized for other parameters of interest. We detail the design and simulation process that led to our metamaterial, and our experiments demonstrate a peak absorbance greater than 88% at 11.5 GHz.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stretchable microfluidic radiofrequency antennas.

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                21 May 2017
                May 2017
                : 17
                : 5
                : 1175
                Affiliations
                School of Electrical and Electronics Engineering, College of Engineering, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea; jhijun000015@ 123456gmail.com
                Author notes
                [* ]Correspondence: sungjoon@ 123456cau.ac.kr ; Tel.: +82-2-820-5827
                Article
                sensors-17-01175
                10.3390/s17051175
                5470920
                28531136
                f1f6bef8-d0c8-490f-87e3-3ed6c470c2fa
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 March 2017
                : 19 May 2017
                Categories
                Article

                Biomedical engineering
                electromagnetic,absorber,screen printing,stretchable
                Biomedical engineering
                electromagnetic, absorber, screen printing, stretchable

                Comments

                Comment on this article