8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tip rates, phylogenies and diversification: What are we estimating, and how good are the estimates?

      1 , 2 , 1
      Methods in Ecology and Evolution
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography.

          A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates.

            The uneven distribution of species richness is a fundamental and unexplained pattern of vertebrate biodiversity. Although species richness in groups like mammals, birds, or teleost fishes is often attributed to accelerated cladogenesis, we lack a quantitative conceptual framework for identifying and comparing the exceptional changes of tempo in vertebrate evolutionary history. We develop MEDUSA, a stepwise approach based upon the Akaike information criterion for detecting multiple shifts in birth and death rates on an incompletely resolved phylogeny. We apply MEDUSA incompletely to a diversity tree summarizing both evolutionary relationships and species richness of 44 major clades of jawed vertebrates. We identify 9 major changes in the tempo of gnathostome diversification; the most significant of these lies at the base of a clade that includes most of the coral-reef associated fishes as well as cichlids and perches. Rate increases also underlie several well recognized tetrapod radiations, including most modern birds, lizards and snakes, ostariophysan fishes, and most eutherian mammals. In addition, we find that large sections of the vertebrate tree exhibit nearly equal rates of origination and extinction, providing some of the first evidence from molecular data for the importance of faunal turnover in shaping biodiversity. Together, these results reveal living vertebrate biodiversity to be the product of volatile turnover punctuated by 6 accelerations responsible for >85% of all species as well as 3 slowdowns that have produced "living fossils." In addition, by revealing the timing of the exceptional pulses of vertebrate diversification as well as the clades that experience them, our diversity tree provides a framework for evaluating particular causal hypotheses of vertebrate radiations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The reconstructed evolutionary process.

              Phylogenies reconstructed from contemporary taxa do not contain information about lineages that have gone extinct. We derive probability models for such phylogenies, allowing real data to be compared with specified null models of evolution, and lineage birth and death rates to be estimated.
                Bookmark

                Author and article information

                Journal
                Methods in Ecology and Evolution
                Methods Ecol Evol
                Wiley
                2041-210X
                2041-210X
                April 02 2019
                June 2019
                February 11 2019
                June 2019
                : 10
                : 6
                : 821-834
                Affiliations
                [1 ]Department of Ecology and Evolutionary Biology and Museum of ZoologyUniversity of Michigan Ann Arbor Michigan
                [2 ]Environmental Resilience InstituteIndiana University Bloomington Indiana
                Article
                10.1111/2041-210X.13153
                f1fac174-cdec-4921-9faa-1eb447b066cd
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article