26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting

      review-article
      , *
      Molecules
      MDPI
      3D printing, bioprinting, biopolymers, bioinks, printability, resolution

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent developments in 3D printing technologies and design have been nothing short of spectacular. Parallel to this, development of bioinks has also emerged as an active research area with almost unlimited possibilities. Many bioinks have been developed for various cells types, but bioinks currently used for 3D printing still have challenges and limitations. Bioink development is significant due to two major objectives. The first objective is to provide growth- and function-supportive bioinks to the cells for their proper organization and eventual function and the second objective is to minimize the effect of printing on cell viability, without compromising the resolution shape and stability of the construct. Here, we will address the current status and challenges of bioinks for 3D printing of tissue constructs for in vitro and in vivo applications.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Three-dimensional bioprinting of thick vascularized tissues.

          The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Printing and prototyping of tissues and scaffolds.

            New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct 3D Printing of Shear-Thinning Hydrogels into Self-Healing Hydrogels.

              Supramolecular hydrogels are used in the 3D printing of high-resolution, multi-material structures. The non-covalent bonds allow the extrusion of the inks into support gels to directly write structures continuously in 3D space. This material system supports the patterning of multiple inks, cells, and void spaces.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                25 May 2016
                June 2016
                : 21
                : 6
                : 685
                Affiliations
                School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; amit005@ 123456e.ntu.edu.sg
                Author notes
                [* ]Correspondence: LPTAN@ 123456ntu.edu.sg ; Tel.: +65-981-859-08
                Article
                molecules-21-00685
                10.3390/molecules21060685
                6273655
                27231892
                f1ff3c6c-451b-4cb8-8bcc-00993edddc8a
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 April 2016
                : 19 May 2016
                Categories
                Review

                3d printing,bioprinting,biopolymers,bioinks,printability,resolution

                Comments

                Comment on this article